UPV



Resultados de la búsqueda By Etiquetas: journal-of-cleaner-production


Método de redes bayesianas para la toma de decisiones respecto a la sostenibilidad social de los proyectos de infraestructura

Acaban de publicarnos en la revista Journal of Cleaner Production un artículo donde aplicamos el método de las redes bayesianas aplicado a la toma de decisiones relacionadas con la sostenibilidad social de los proyectos. El Journal of Cleaner Production es revista de fuerte impacto, pues se encuentra en el primer decil en el ámbito ENVIRONMENTAL SCIENCES de la Web of Science. Os dejo a continuación el resumen y el enlace al artículo por si os resulta de interés: https://www.sciencedirect.com/science/article/pii/S0959652617330998 

Os podéis DESCARGAR GRATUITAMENTE el artículo hasta el próximo 16 de febrero del 2018 en este enlace: https://authors.elsevier.com/a/1WISs3QCo9NI4s 

ABSTRACT:

Nowadays, sustainability assessment tends to focus on the biophysical and economic aspects of the built environment. The social aspects are generally overestimated during an infrastructure evaluation. This study proposes a method to optimize infrastructure projects by assessing their social contribution. This proposal takes into account the infrastructure’s interactions with the local environment in terms of its potential contribution in the short and long term. The method is structured in three stages: (1) preparation of a decision-making model, (2) formulation of the model, and (3) implementation of the model through optimization of infrastructure projects from the social sustainability viewpoint. The theory of Bayesian reasoning and a harmony search optimization algorithm are used to carry out the research. The paper presents the application to a case study of a set of alternatives for road infrastructure projects in El Salvador. This approach creates a model of participative decision-making. The results show that the method can distinguish socially efficient alternatives from the short and long-term contributions. In addition, the results suggest that some variables are less sensitive to the short and long-term maximization, while others vary their values to improve one objective or the other. The findings are directly applied to a real case. The method can be employed in the infrastructure formulation and prioritization phases and complemented with economic and environmental sustainability assessments.

KEYWORDS:

Bayesian networks, Infrastructure, Multiple criteria, Optimization algorithm, Social sustainability

Reference:

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140

 

Enfoque multiobjetivo para seleccionar modelos de evaluación avanzados de vulnerabilidad urbana

Acaban de publicarnos un artículo sobre evaluación de la vulnerabilidad urbana en la revista Journal of Cleaner Production, revista de fuerte impacto, pues se encuentra en el primer decil en el ámbito ENVIRONMENTAL SCIENCES de la Web of Science. Os dejo a continuación el resumen y el enlace al artículo por si os resulta de interés: http://www.sciencedirect.com/science/article/pii/S0959652617329232

Os podéis descargar el artículo GRATUITAMENTE hasta el 1 de marzo de 2018 en esta dirección: https://authors.elsevier.com/c/1WMmc3QCo9NHfG

ABSTRACT:

The development of more-evolved urban vulnerability assessment (UVA) models has become an increasingly important issue for both policy agendas and academia. Several requirements have already been set for this goal; they should be pursued simultaneously. However, methods with such integration are yet to be developed. The present paper addresses this integration via a discursive process in which interactions between decision makers and the method contribute to the selection of a model fulfilling these requirements. That model yields a UVA built upon both qualitative information and quantitative data from indicators selected for the neighbourhood, city, province, region and country political administrative scales. The characteristics demanded are encoded both into the UVA assessment model and in the optimization and control modules governing the process. While the optimization produces compromise solutions, the control module supervises the process, provides dynamic control and enables the interactions. Interactions are informed with knowledge derived from the cognitive approach entailed by the method and afford a better understanding of the process dynamics. We conclude that the goodness of fit and time dynamics objectives are aligned. Therefore, UVA methods performing well for these objectives are available, although at the expense of a medium to poor performance in preferences and robustness.

KEYWORDS:

Urban vulnerability assessment; Discursive approach; Many-objective optimization; Cognitive approach

Reference:

SALAS, J.; YEPES, V. (2018). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176:1231-1244. https://doi.org/10.1016/j.jclepro.2017.11.249

Universidad Politécnica de Valencia