UPV



Resultados de la búsqueda By Etiquetas: investigacion-operativa


Los algoritmos genéticos

Charles Darwin en una fotografía tomada por J.M. Cameron en 1869.

Resulta fascinante comprobar cómo aplicando los mecanismos básicos de la evolución ya descrita por Darwin en su obra fundamental, El origen de las especies por medio de la selección natural, o la preservación de las razas preferidas en la lucha por la vida, publicada en 1859, se pueden generar algoritmos capaces de optimizar problemas complejos. Este tipo de metaheurísticas inspiradas en la Naturaleza ya se comentaron en posts anteriores cuando hablamos de la optimización por colonias de hormigas o de la cristalización simulada. Aunque es un algoritmo ampliamente conocido por la comunidad científica, voy a intentar dar un par de pinceladas con el único afan de divulgar esta técnica. La verdad es que las implicaciones filosóficas que subyacen tras la teoría de Darwin son de una profundidad difícil de entender cuando se lleva a sus últimos extremos. Pero el caso es que estos algoritmos funcionan perfectamente en la optimización de estructuras de hormigón, problemas de transporte y otros problemas difíciles de optimización combinatoria.

Para aquellos interesados, os paso en las referencias un par de artículos donde hemos aplicado los algoritmos genéticos para optimizar rutas de transporte aéreo o pilas de puente huecas de hormigón armado. (más…)

¿Qué es la optimización combinatoria?

Los problemas de optimización en los que las variables de decisión son enteras, es decir, donde el espacio de soluciones está formado por ordenaciones o subconjuntos de números naturales, reciben el nombre de problemas de optimización combinatoria. En este caso, se trata de hallar el mejor valor de entre un número finito o numerable de soluciones viables. Sin embargo la enumeración de este conjunto resulta prácticamente imposible, aún para problemas de tamaño moderado.

Las raíces históricas de la optimización combinatoria subyacen en ciertos problemas económicos: la planificación y gestión de operaciones y el uso eficiente de los recursos. Pronto comenzaron a modelizarse de esta manera aplicaciones más técnicas, y hoy vemos problemas de optimización discreta en diversas áreas: informática, gestión logística (rutas, almacenaje), telecomunicaciones, ingeniería, etc., así como para tareas variadas como el diseño de campañas de marketing, la planificación de inversiones, la división de áreas en distritos políticos, la secuenciación de genes, la clasificación de plantas y animales, el diseño de nuevas moléculas, el trazado de redes de comunicaciones, el posicionamiento de satélites, la determinación del tamaño de vehículos y las rutas de medios de transporte, la asignación de trabajadores a tareas, la construcción de códigos seguros, el diseño de circuitos electrónicos, etc. (Yepes, 2002). La trascendencia de estos modelos, además del elevado número de aplicaciones, estriba en el hecho de que “contiene los dos elementos que hacen atractivo un problema a los matemáticos: planteamiento sencillo y dificultad de resolución” (Garfinkel, 1985). En Grötschel y Lobas (1993) se enumeran otros campos en los cuales pueden utilizarse las técnicas de optimización combinatoria.

REFERENCIAS

GARFINKEL, R.S. (1985). Motivation and Modeling, in LAWLER, E.L.; LENSTRA, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B. (eds.) The Traveling Salesman Problem: A Guide Tour of Combinatorial Optimization. Wiley. Chichester.

GRÖTSCHEL, M.; LÓVASZ, L. (1993). Combinatorial Optimization: A Survey. Technical Report 93-29. DIMACS, May.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

Optimización y programación matemática

George Bernard Dantzig

George Bernard Dantzig (1914-2005), “padre de la programación lineal”

Optimizar significa buscar la mejor manera de realizar una actividad, y en términos matemáticos, hallar el máximo o mínimo de una cierta función, definida en algún dominio. La optimización constituye un proceso para encontrar la mejor solución de un problema donde “lo mejor” se concilia con criterios establecidos previamente.

La programación matemática constituye un campo amplio de estudio que se ocupa de la teoría, aplicaciones y métodos computacionales para resolver los problemas de optimización condicionada. En estos modelos se busca el extremo de una función objetivo sometida a un conjunto de restricciones que deben cumplirse necesariamente. Las situaciones que pueden afrontarse con la programación matemática se suelen presentar en ingeniería, empresas comerciales y en ciencias sociales y físicas.

Con carácter general, un programa matemático (ver Minoux, 1986) consiste en un problema de optimización sujeto a restricciones en  de la forma:

 

(más…)

5 junio, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

¿Cómo decidir cuando tenemos un dilema? El óptimo de Pareto

Los problemas de decisión están presentes en todos los ámbitos del ser humano: finanzas, empresa, ingeniería, salud, etc. Una de las grandes dificultades al tomar una decisión ocurre cuando queremos conseguir varios objetivos distintos, muchos de ellos incompatibles o contradictorios. Por ejemplo, si queremos un vehículo que sea muy veloz, debería tener un perfil aerodinámico que a veces es incompatible con la comodidad de los usuarios;  si queremos hacer un negocio con grandes beneficios, a veces tenemos que asumir ciertos riesgos, etc. Una herramienta que permite afrontar este tipo de problemas de decisión es el denominado “óptimo de Pareto“. A continuación os paso un vídeo explicativo de este tema. Espero que os guste.

 

 

18 diciembre, 2013
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  |  

¿Por qué son tan complicados los problemas de distribución física?

Aspecto de diversas soluciones al problema de rutas

Aspecto de diversas soluciones al problema de rutas

Los problemas de distribución física consisten básicamente en asignar una ruta a cada vehículo de una flota para repartir o recoger mercancías. Los clientes se localizan en puntos o arcos y a su vez pueden presentar horarios de servicio determinados; el problema consiste en establecer secuencias de clientes y programar los horarios de los vehículos de manera óptima. Los problemas reales de transporte son extraordinariamente variados. Yepes (2002) propone una clasificación que contiene un mínimo de 8,8·109 combinaciones posibles de modelos de distribución. Si alguien fuese capaz de describir en un segundo cada uno de ellos, tardaría cerca de 280 años en enunciarlos todos. La investigación científica se ha centrado, por tanto, en un grupo muy reducido de modelos teóricos que además tienden a simplificar excesivamente los problemas reales. Son típicos problemas de optimización matemática combinatoria. (más…)

30 noviembre, 2013
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

¿Qué es la investigación operativa?

La investigación de operaciones o investigación operativa es una rama de las matemáticas que consiste en el uso de modelos matemáticos, estadística y algoritmos con objeto de modelar y resolver problemas complejos  determinando la solución óptima y permitiendo, de este modo, tomar decisiones.  Frecuentemente trata del estudio de complejos sistemas reales, con la finalidad de mejorar (u optimizar) su funcionamiento. La investigación de operaciones permite el análisis de la toma de decisiones teniendo en cuenta la escasez de recursos, para determinar cómo se puede optimizar un objetivo definido, como la maximización de los beneficios o la minimización de costos.

Aunque su nacimiento como ciencia se establece durante la Segunda Guerra Mundial y debe su nombre a las operaciones militares, los verdaderos orígenes de la Investigación Operativa se remontan mucho más atrás en el tiempo, hasta el siglo XVII. Esta disciplina nació en Inglaterra durante la Segunda Guerra Mundial como estrategia para encontrar soluciones a problemas militares, para ello fue necesario crear un Grupo de Investigación de Operaciones Militares conformado por un grupo de científicos multidisciplinares. Al terminar la guerra este método fue empleado en darle solución a problemas generales como el control de inventarios, asignación de recursos, líneas de espera, entre otros. Esta técnica cumplió sus objetivos en la década de los cincuenta y sesenta, hasta su desarrollo total en la actualidad. Sin embargo su auge es debido, en su mayor parte, al gran desarrollo de la informática, gracias a la cual es posible resolver problemas en la práctica y obtener soluciones que de otra forma conllevarían un enorme tiempo de cálculo. Debido a este éxito, la Investigación Operativa  se extendió a otros campos tales como la industria, física, informática, economía, estadística y probabilidad, ecología, educación, servicio social, …, siendo hoy en día utilizada prácticamente en todas las áreas. Algunos de los promotores más importantes de la filosofía y aplicación de la investigación de operaciones son C.W. Churchman, R.L. Ackoff y R. Bellman. Actualmente la Investigación Operativa incluye gran cantidad de ramas como la Programación Lineal, Programación No Lineal, Programación Dinámica, Simulación, Teoría de Colas, Teoría de Inventarios, Teoría de Grafos, etc.

Os presento ahora un vídeo, que no llega a 3 minutos de duración sobre el tema. Espero que os guste. (más…)

¿Qué es un algoritmo?

Algoritmo de Euclides

Algoritmo de Euclides

Un algoritmo es un conjunto prescrito de reglas o instrucciones bien definidas para la resolución de un problema. En general, se trata de encontrar el método más “eficiente”, no siendo baladí el modo de medir dicha eficiencia. Para resolver esta circunstancia, en la década de los 70 numerosos científicos se interesaron por la complejidad computacional de los problemas y los algoritmos. En muchos casos se asimila el rendimiento algorítmico a la medida del tiempo medio de ejecución empleado por un procedimiento para completar su operación con un conjunto de datos. Además, es posible relacionar el esfuerzo de cálculo con la dimensión del problema a resolver.

Un algoritmo muestra una complejidad polinómica si necesita un tiempo O(nk), donde n muestra la dimensión de entrada y k es una constante independiente de n. Si la función que denota la complejidad no está acotada por un polinomio, el algoritmo presenta una complejidad en tiempo exponencial. (más…)

La logística y los problemas de distribución física

Empezamos una serie de posts que van a tratar aspectos relacionados con el transporte, la logística, la distribución de mercancías, la investigación de las operaciones y, en definitiva, la toma de decisiones en las empresas. Como siempre, el objeto es divulgativo, abriendo puertas a la reflexión y no pretendiendo, ni mucho menos, abarcar todos los aspectos relativos a un tema determinado. Empezamos, pues.

El National Council of Physical Distribution Management definió, en 1979 (ver Ballou, 1991) la gestión de la distribución física como “todas aquellas actividades encaminadas a la planificación, implementación y control de un flujo creciente de materias primas, recursos de producción y productos finales desde el punto de origen al de consumo”. Entre estas tareas se encuentran el servicio al cliente, la previsión de la demanda, el control de inventarios, los servicios de reparación, el manejo de mercancías, el procesamiento de pedidos, la selección de la ubicación geográfica de las fábricas y los almacenes, las compras, el empaquetado de productos, el tratamiento de las mercancías devueltas, la recuperación y tratamiento de desperdicios, la distribución y el transporte, y el almacenamiento. Sin embargo, otros autores prefieren emplear el término de logística empresarial.

(más…)

14 abril, 2012
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Universidad Politécnica de Valencia