UPV



Resultados de la búsqueda By Etiquetas: ingenieria-civil


La construcción romana, el hormigón y otras cosas en Radio Nacional

Puente de Alcántara, puente romano en arco construido entre 104 y 106, que cruza el río Tajo en la localidad cacereña de Alcántara.

Resulta gratificante tener la oportunidad de conversar tranquilamente en un medio de comunicación como es Radio Nacional de España sobre ciencia, tecnología e ingeniería. El otro día me entrevistaron en el programa “24 horas“, presentado por Miguel Ángel Domínguez sobre la construcción romana, el hormigón y otros aspectos relacionados con la ingeniería civil y la inteligencia artificial. Se trata de un programa que dedica un espacio los miércoles a la tertulia científica y es, para la ingeniería, una oportunidad para acercar la técnica al gran público, facilitando la labor tan importante de divulgación científica.

 

 

Hablamos sobre las razones por las cuales las construcciones romanas han llegado hasta nuestros días, de la calidad de los hormigones romanos, del impacto medioambiental de la fabricación del cemento Portland, de la tecnología actual de la construcción y de la aplicación de la inteligencia artificial en el diseño automático y óptimo de puentes. Aunque la entrevista se quedó muy corta y nos dejamos en el tintero muchas cosas, os paso el post para que lo escuchéis en cualquier momento. También tenéis otras entrevistas anteriores relacionadas con el puente Hong Kong-Zhuhai-Macao, o con el Golden Gate. Espero que os sean de interés.

 

 

Pinceladas acerca de la ingeniería en la antigua China

Quin Shi Huang, fundador de la Dínastia Quin.

En posts anteriores ya hemos hecho mención a la ingeniería primitiva, la desarrollada en Mesopotamia o en la Grecia Clásica. Mención especial merecen los desarrollos alcanzados en la Antigua China, que en el siglo I ya tenía 57 millones de habitantes, superando a Roma, aunque ambos imperios apenas llegaran a conocerse entre ellos. Por tanto, hoy vamos a dar dos pinceladas a las realizaciones de la milenaria China, sabiendo que dejamos muchísima información por el camino. Los cuatro grandes inventos chinos fueron el papel, la brújula, la pólvora y la imprenta.

Una de las más grandes realizaciones de todos los tiempos fue la Gran Muralla China, con más de 4 km de muro en total. Esta muralla tiene unos 10 m de altura, 8 m de espesor en la base y 5 m en la parte superior, por donde discurre un camino pavimentado. Su construcción requirió un elevado número de personas. Los bloques de piedra se traían con rodillos a las zonas previamente excavadas para su colocación. Su construcción se complicaba en zonas con fuertes vientos o en otras de clima desértico. Los materiales empleados fueron los disponibles en cada sitio: piedra caliza, granito o ladrillo cocido. Especialmente eficaz a los impactos de armas de asedio fueron las tapias de arcilla y arena cubiertas con varias paredes de ladrillo. Para hacerse una idea, en el reinado de Qin Shi Huang, que empezó a gobernar en el 221 a.C., se construyeron caminos y vías. Nada menos que 6.800 km durante sus 20 años de imperio, lo cual es muy llamativo si tenemos en cuenta que los romanos, 300 años después, tuvieron un total de 5.984 km, casi mil menos.

 

Vista parcial del sistema de irrigación de Dujiangyan.

Vista parcial del sistema de irrigación de Dujiangyan.

También China tuvo canales desde hace miles de años. El sistema de irrigación de Dujiangyan comenzó en el siglo III a.C., basándose su construcción en un canal que tuvo que atravesar una montaña, lo cual no fue una tarea fácil teniendo en cuenta los procedimientos constructivos de la época. Para salvar dicho problema, se recurrió al calentamiento y enfriamiento repetido de la roca, lo cual fractura la roca y permitía su excavación.  Para evitar la acumulación de limo en el sistema de irrigación, se construyó un dique en el centro del río, cimentados en unos enormes gaviones hechos de bambú.Además, fueron los primeros constructores de puentes, con características únicas. Algunos de sus puentes más antiguos fueron de suspensión, con cables hechos de fibra de bambú.Aunque sin basarse en teorías científicas, los antiguos constructores chinos empleaban un método que está relacionado con los “drenes de arena”. En sus suelos aluviales blandos hincaban pilotes de madera que extraían, a continuación, por rotación. Los agujeros eran rellenados con cal viva bien compactada. Estos pozos de cal absorbían el agua que los rodeaba, produciendo, de este modo, una consolidación acelerada del suelo, siendo éstos los principios del empleo de las técnicas de mejora del terreno.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

21 septiembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Concepto de puente viga y algo de historia

Puente en cajón postesado sobre el Turia (Quart de Poblet). Proyectado por Javier Manterola y construído por Dragados y Construcciones en 1991.

Una viga constituye una pieza lineal apoyada que resiste fundamentalmente a flexión. Estas estructuras presentan un canto e inercia crecientes con luz, puesto que la flexión es directamente proporcional al cuadrado de la luz. Los puentes viga, por tanto, se basan en secciones de máxima inercia y de mínimo peso (secciones en doble T, cajones, etc.).

Aunque morfológicamente el puente viga puede parecer el sistema más simple y directo de atravesar un río, su mecanismo resistente, la flexión, es más complejo y difícil de intuir que el esfuerzo axil, ya sea de tracción o compresión, predominante en otras tipologías estructurales, como los arcos (ver un post anterior).

Las primeras intuiciones sobre el mecanismo de la flexión en una viga surgen en el Renacimiento con Leonardo da Vinci, aunque fue Galileo el primero que intentó dar una explicación científica al comportamiento de una viga. Sin embargo, fue Coulomb (1736-1806) el primero que propuso las condiciones de equilibrio de las secciones de la viga y Navier (1785-1836) el que resolvió en 1824 completamente el problema basándose en la proporcionalidad de tensiones y deformaciones (ley de Hooke) y en la hipótesis de la conservación de las secciones planas. Continuadores de Navier fueron Saint-Venant y Bresse que hicieron importantes aportaciones a la resistencia de materiales y al cálculo de las estructuras hiperestáticas. Sin embargo, no fue hasta 1954 el año en que Livesley inició el método matricial del cálculo de estructuras empleado hoy masivamente con el empleo de los ordenadores personales.

La modelización para el cálculo de un puente viga puede seguir un análisis como estructura lineal. Sin embargo, el tablero del puente es una superficie, y por tanto, deber estudiarse adecuadamente el efecto del reparto de las cargas. En los puentes oblicuos se requiere incluso un estudio tridimensional de tensiones. Es habitual, por tanto, emplear modelos de cálculo bidimensionales basados en la losa ortótropa (rigidezes distintas en las dos direcciones). Es habitual el empleo del modelo del emparrillado, el de láminas plegadas, el de bandas o de elementos finitos.

En cuanto a las soluciones estructurales, éstas han pasado, según crecía la luz a salvar por el puente, por la losa maciza, la losa aligerada, el tablero de vigas de alma llena, las vigas en celosía o trianguladas y las vigas cajón. Con las triangulaciones se llega a la máxima reducción de material, constituyendo los puentes viga que cubren las luces mayores. Sin embargo, en las vigas cajón se consigue la máxima eficacia resistente por su excelente comportamiento tanto a flexión como a torsión.

Puente viga isostática tipo Howe

Puente viga isostática tipo Howe

Las vigas pueden estar simplemente apoyadas en sus extremos, o bien ser vigas continuas, es decir, apoyadas en varios puntos. Los puentes viga biapoyados constituyen estructuras isostáticas, de cálculo sencillo, que han sido empleados para cubrir pequeñas y medianas luces. Los puentes en viga continua son estructuras hiperestáticas, que permiten reducir considerablemente la flexión de cálculo, debido al cambio de signo de estos esfuerzos en los apoyos y en el centro del vano.

Los puentes continuos presentan ciertas ventajas frente a los simplemente apoyados. Se requiere un menor número de apoyos y de juntas (superficie de rodadura sin interrupciones), los cantos son menores y, asimismo, la deflexión y la vibración son menores. Sin embargo, los asientos diferenciales pueden afectar a la estructura. Otro inconveniente, aunque menor, es la mayor complejidad en el análisis del puente continuo, sin embargo, es una dificultad relativa con los potentes medios de cálculo actuales. Además, en los puentes prefabricados, es habitual un sistema constructivo evolutivo que pasa del isostatismo al hiperestatismo al unir las piezas prefabricadas a una losa de hormigón y además se da una continuidad longitudinal. En estos casos deben contemplarse las redistribuciones de esfuerzos en el tiempo por la fluencia y retracción del hormigón, y si, además, la sección evoluciona, aparecen también redistribuciones internas de tensiones. Estas redistribuciones no son despreciables y deben considerarse en el cálculo en el proyecto y en la construcción.

Una tercera opción lo constituyen las vigas Gerber o en cantilever, que introducen articulaciones en una viga continua con tal de hacerla isostática. En este último caso se suman las ventajas de las vigas continuas (cambio de signo en los momentos) y las vigas biapoyadas (no se ven afectadas por asientos del terreno).

Los puentes viga se han construido con materiales tan diversos como la madera, el acero, el hormigón armado y el hormigón pretensado. Los puentes de vigas en celosía y trianguladas en madera se desarrollaron en el siglo XIX sobre todo en Estados Unidos con la extensión del ferrocarril. Se llegó con vigas Town de madera a luces de 70 m en el puente de Blenheim en 1853. En 1840 Howe patentó la primera viga mixta de madera y hierro, sin embargo pronto se impusieron las vigas puramente metálicas.

Hacia 1830 la producción industrial de hierro comienza a desarrollarse con el ferrocarril, y con ello se recurrió a este nuevo material en forma de vigas trianguladas o de vigas de alma llena. En esta última categoría destaca el puente Britannia, sobre el Menai (Gales), finalizado en 1850 por Stephenson, con dos tramos centrales de 140 m de luz.

La sección de caja original del Puente Britannia, circa 1852.

La sección de caja original del Puente Britannia, circa 1852.

A finales del siglo XIX el acero sustituyó completamente al hierro y, por supuesto, a la fundición. Los puentes viga de acero se impusieron rápidamente por su ligereza. Para luces medias, y por encima de los 75 m, las soluciones metálicas entran en competencia con el hormigón pretensado. La luz de 300 metros del vano central de puente de Niteroi (Río de Janeiro, Brasil) se puede considerar límite en puentes metálicos en viga continua con sección en cajón, porque la solución más adecuada para estas luces es la atirantada. Otras tipologías como los puentes atirantados o los colgantes, quedan fuera de la clasificación de los puentes viga.

Tampoco se entrará en la descripción de los puentes viga de hormigón armado, pues éstos quedan relegados a las pequeñas obras de fábrica (menos de 15 m de luz), estando ampliamente superada su tecnología con el hormigón pretensado para luces mayores. Sin embargo, el puente viga de hormigón armado de mayor luz del mundo es la pasarela de Irvy sobre el Sena (París), con 134,5 m de luz, construida en 1930; su tipología corresponde con una viga triangulada. Para otros post dejamos los aspectos constructivos de estos puentes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

18 septiembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

El concepto de puente

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León)

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León). Imagen: © V. Yepes

Los puentes pueden considerarse como una de las construcciones cuyos orígenes se pierden en los albores del tiempo. Son las obras civiles por excelencia. Sin embargo, son mucho más que simples construcciones, en palabras de Juan José Arenas, “un puente ha sido, y es, sin género de dudas, un elemento indispensable para el desarrollo de la civilización y de la cultura”.

Los puentes a lo largo de la historia han identificado paisajes y se han erigido en articuladores del espacio. Javier Manterola  recuerda que “el puente es un elemento del camino”, por tanto, no puede entenderse sin él, pero tampoco sin el obstáculo. Es el paradigma del esfuerzo de la razón en su pretensión de superar todo tipo de dificultad y contratiempo. Para Miguel Aguilólos puentes … expresan la superación de un obstáculo, de una incomunicación, de una situación comprometida”. Es el afán sempiterno por vencer los límites que amordazan la voluntad humana.

El puente es la metáfora perfecta de la unión entre las partes, de la comunicación, del intercambio y del progreso. También significa el paso o tránsito hacia el otro lado, hacia lo desconocido, con toda la carga de magia y misterio que lo rodea. Es la victoria de la razón sobre las fuerzas de la Naturaleza, aunque para otros es fruto de la intervención del maligno. Fernández-Troyano  nos recuerda que la magia consiste en “sostener el camino en el aire”, dejándolo flotar contra todo pronóstico, sorteando el orden establecido.

Es un símbolo de poder para quien lo controla y un paso hacia la inmortalidad para quien lo construye. Para otros es propaganda, una “golosina visual”, una marca o un reclamo turístico. Sin embargo, para los ingenieros, un puente puede ser la más bella obra que la razón ha regalado a los humanos. Aprender a ver un puente, por tanto, va más allá de la simple contemplación; consiste en descubrir su verdad interna, aquello que el autor ha querido expresar y que, en esencia, es la posibilidad de crear una estructura sólida, bella y funcional, como diría Vitruvio.

Puente della Trinitá en Florencia.  Imagen: © V. Yepes

Para José Antonio Fernández-Ordoñez el paradigma vitruviano queda limitado en nuestra búsqueda de entender el lenguaje del puente, incluso si se añaden las componentes constructivas y económicas. En efecto, tal y como nos refiere él mismo, le “interesan especialmente otros tres aspectos menos tratados, pero no menos importantes, como son el estético, el histórico y el de integración con su entorno, es decir la naturaleza”.

Un puente es una obra de arte que, más allá de su arquitectura, presenta una dialéctica tensional que, bien entendida e interpretada, permite escucharla como una composición musical, con todos sus matices, timbres y tonos. Sin embargo, como cualquier obra de arte, es imposible descifrarla fuera de contexto, sin su entorno, sin la sociedad que la creó. Un puente crea, por tanto, otra dialéctica, la visual con el paisaje, creando o destruyendo el lugar, lo cual implica que el puente debe ser algo singular, creado “ad hoc”, que no sirve para cualquier sitio o circunstancia, y que debe ser fruto de la sociedad que lo ha visto nacer. Santiago Hernández (2009:11) expresa claramente esta idea cuando habla del “alma de los puentes”, es decir, “de la capacidad de provocar sentimientos en quienes los han construido y en aquellos que, cuando los contemplan, pueden ver a todos quienes han hecho posible que su obra sirva a miles de personas durante siglos. El puente es más que un libro, más que una película, más que un relato, más que una herramienta… el puente nos permite vivir una ‘experiencia’ que nos une a su origen, su pasado, su presente y su futuro”.

El protagonista, por tanto, es ese lenguaje dialéctico, interno del puente y externo con el contexto y el paisaje. Cuando el propio puente, su autor o su promotor prevalecen deliberadamente sobre este lenguaje, el puente pierde gran parte de su valor, prostituyendo su esencia. A este respecto, Miguel Aguiló  ya nos previene de estos peligros: “… lo puramente funcional va siempre acompañado de intenciones simbólicas, de emulación, de prestigio o de ostentación, y son precisamente estas finalidades no explícitas en la función las que fomentan o impulsan la desproporción”. Es quizás en este contexto cuando ciertas reflexiones de Florentino Regalado pueden adquirir mayor brillo: “una reflexión meticulosa, la reflexión y el sentido común, y unas ciertas dosis de humidad, se echan a faltar en lo que se proyecta y construye”.

Quizá Steinman y Watson fueron capaces de sintetizar lo que el puente significa para aquellos que los amamos profundamente, “porque un puente es algo más que una cosa de acero y piedra: es la concreción del esfuerzo de cabezas, corazones y manos humanas. Un puente es más que una suma de deformaciones y tensiones: es una expresión del impulso de los hombres -un desafío y una oportunidad de crear belleza-. Un puente es el símbolo del heroico esfuerzo de la humanidad hacia el dominio de las fuerzas de la naturaleza. Un puente es un monumento a la tenaz voluntad de conquista del género humano”.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Notas sobre los puentes renacentistas

Pont Neuf, Paris (Dibujo Víctor Yepes)

Vamos a intentar divulgar, en unas breves notas, algunas ideas sobre los puentes renacentistas. Este post sigue a otros anteriores que trataron sobre la ingeniería en el Renacimiento, el diseño de los arcos a lo largo de la historia o el concepto de puente. Espero que os guste, a sabiendas que me dejaré muchísimas cosas por el camino.

Empecemos, pues. El Renacimiento imprime a todas las ramas del saber un impulso renovador aún no extinguido. A lo largo los siglos XV y XVI empieza a cambiar la profesión que desembocará en el ingeniero. Las cortes europeas exigen profesionales que se ocupen más allá de las máquinas de guerra y se ocupen de la dirección de proyectos técnicos como los caminos, los puentes, las obras hidráulicas, etc. Además, se da un fuerte impulso hacia la creación de un soporte científico que avale la ingeniería: “ars sine scientia nihil est”, cita, por cierto, del arquitecto Jean Mignot. De hecho, los ingenieros del Renacimiento juzgan fundamental la asociación de su profesión con las matemáticas (Millán, 2004). Un hito fundamental fue el tratado de Leon Battista Alberti, De reaedificatoria, escrita en latín entre 1443 y 1452, que pretende imitar y culminar la obra de Vitruvio. El trabajo de Alberti se publicó en 1485, y un año después el de Vitruvio, en aquellos primeros años de la imprenta. Leonardo da Vinci (1452-1519) empezó a formular los principios de la naciente teoría estructural y Andrea Palladio (1518-1580) introdujo el concepto de cercha o entramado. Sin embargo, hay que esperar al siglo XVII para encontrarnos con las figuras de Galileo, Hooke o Mariotte para empezar a cimentar la teoría de las estructuras que se desarrollaría en los siglos posteriores.

La ingeniería de corte típicamente medieval cambió en la Italia del siglo XV (García-Tapia, 1987). En España este cambio de mentalidad fue más tardío, no pudiéndose hablar con propiedad de una ingeniería clasicista hasta la segunda mitad del siglo XVI, con la aparición de los ingenieros teóricos y de los arquitectos-ingenieros. Sin embargo, las circunstancias históricas y sociales del siglo XVII abortaron tempranamente este Renacimiento en la ingeniería. Las numerosas obras locales emprendidas entonces estuvieron a cargo de maestros de obras que difícilmente podrían catalogarse como ingenieros en el sentido actual.

El descubrimiento de las ruinas clásicas romanas, olvidadas en el Medievo, y el hallazgo, por el estudioso Poggio Bracciolini, de un manuscrito de Vitruvio en la biblioteca del monasterio de San Gall en el año 1415 marcan, según García-Tapia (1987) los dos acontecimientos que contribuyeron a la ingeniería del Renacimiento. Fue la invención de la imprenta la que catapultó la difusión del libro de Vitruvio. En él se definía el ideal de arquitecto-ingeniero humanista, con conocimientos en diversas artes, además de definir los procedimientos constructivos de la antigüedad clásica y los tipos de máquina empleados por los romanos del siglo I. García-Tapia (1987:25) describe instrumentos, ingenios y máquinas empleados en las obras públicas renacentistas.

Las técnicas constructivas de los siglos XV y XVI no cambian sustancialmente respecto a las empleadas en la Baja Edad Media. Sin embargo, la estética cambia completamente, volviéndose a las formas regulares de la época clásica. Así, los arcos de medio punto vuelven a utilizarse en los puentes, siendo ejemplos canónicos los de Rialto en Venecia (1590), Pont Neuf de París (1578-1604), o el Puente della Trinitá en Florencia (1570). La consideración renacentista del puente como obra de arte se tradujo en una mayor decoración y en la incorporación de esculturas, en una búsqueda por el equilibrio y elegancia de las formas.

Puente de Rialto (Venecia). Fotografía de Rüdiger Wölk.

Los transportes con carruajes se desarrollaron tras la Edad Media, lo cual implicó la desaparición de los incómodos puentes apuntados posteriores al siglo XV y la aparición de bóvedas rebajadas. Sin embargo el rebajamiento aumentaba los empujes sobre las pilas, lo que obligaba a aumentar la prudencia durante la construcción. Se empezaron a utilizar con frecuencia arcos segmentales y a líneas “anse de panier” (arco de varios centros). El más atrevido fue el Puente della Trinitá en Florencia, con un rebajamiento de 1/7 que no volvió a repetirse hasta el siglo XVIII (Grattesat, 1981).

Ponte Vecchio (Florencia). Imagen: V. Yepes(c)

El Renacimiento irrumpió en el mundo de la ingeniería de los puentes con un precedente excepcional, ciertamente anacrónico, rompedor con la tipología de los puentes medievales del momento. Se trata del Ponte Vecchio, construido en Florencia en 1345, obra de Tadeo Gaddi.

Los puentes españoles de la segunda mitad del siglo XVI, presentan, según indica González Tascón (2008), cierto arcaísmo que se manifiesta en el diseño de los tajamares y espolones, que frecuentemente llegan hasta la calzada en forma de apartaderos. Esto se debe, en parte, a que los maestros canteros se habían curtido en la reparación de puentes romanos y medievales. Ejemplos de este tipo de puentes se pueden encontrar en los de Almaraz o Montoro. Sin embargo, las nuevas tendencias europeas evitan este diseño pesado, como es el caso del puente de Segovia (Madrid), diseñado en parte por Juan de Herrera, o el de Ariza en Úbeda (Jaén), obra de Andrés de Vandelvira.

Puente Benameji (Dibujo Víctor Yepes)

Puente Benameji (Dibujo Víctor Yepes)

No me quiero despedir sin hablar, aunque sea un poco, del puente de Segovia de Madrid, aunque sea como pequeño homenaje a Juan de Herrera y el Renacimiento español. Una provisión de Felipe II en el año 1574 da inicio en Madrid, sobre el Manzanares, el puentede Segovia, cuyas obras concluyeron en 1584. La estructura superaba el ámbito local para agrupar el tráfico proveniente de Castilla, por un lado, y de Toledo, Andalucía y Extremadura. El proyecto inicial fue del Maestro Mayor de Obras, Gaspar de la Vega, con arcos decrecientes y perfil medieval en lomo de asno. Sin embargo, cuando a la muerte del primero se hizo cargo Juan de Herrera de la obra, con los encepados de los cimientos ya construidos, decide una rasante horizontal conseguida al recrecer los tímpanos sobre los arcos laterales. De esta forma resultaba innecesario el crecimiento de las luces de los arcos extremos hacia el centro, dándole una impronta moderna al puente. Se trata, por tanto, de un puente de fábrica de sillería con 9 bóvedas de cañón, de una luz entre 9,4 y 12 m, con espesores de pilas entre 5 y 6,7 m. La longitud total es de 185 m y la anchura original del tablero de 12 m. La máxima altura sobre la rasante es de 11,4 m. Se proyectaron tajamares triangulares aguas arriba y semicirculares aguas abajo, rematándose con sombreretes que alcanzan la cota correspondiente al trasdós de la clave de los arcos. En palabras de Arenas (2002) “el puente de Herrera es, más que un puente, una masa ordenada de piedra granítica, …., cuyas formas y proporciones transmiten una imagen de serenidad y equilibrio tan logrados que resulta, en su tremenda austeridad granítica, de una belleza innegable”.

Puente de Segovia (Madrid)

Referencias:

ARENAS, J.J. (2002). Caminos en el aire: los puentes. Colección ciencias, humanidades e ingeniería. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

GARCÍA TAPIA, N. (1987). Ingeniería civil española en el Renacimiento, en Cuatro conferencias sobre historia de la ingeniería de obras públicas en España. CEDEX, Madrid, pp. 7-42.

GONZÁLEZ-TASCÓN, I. (2008). Las vías terrestres y marítimas en la España medieval, en: Ministerio de Fomento, Ars Mechanicae, Ingeniería medieval en España, pp. 21-67.

MILLÁN, A. (2004). Leon Battista Alberti, la ingeniería y las matemáticas del Renacimiento. Suma, 47:93-97.

YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Un análisis histórico, estético y constructivo a las obras de fábrica. Universitat Politècnica de València. Inédito.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

11 septiembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

¿Cómo se han diseñado los arcos a lo largo de la historia?

Pequeño puente de fábrica sobre el río de Pola de Somiedo (Asturias). Fotografía V. Yepes.

Pequeño puente de fábrica sobre el río de Pola de Somiedo (Asturias). Imagen: © V. Yepes, 2010

Seguimos con este post un repaso histórico de los arcos. Como en su día se dijo, este es un “invento diabólico” que revolucionó en su momento el arte de construir. Vamos, pues a seguir con esta labor divulgadora, a sabiendas que nos dejamos muchas cosas por el camino.

Desde la Roma clásica al Renacimiento, los arcos y los estribos se diseñaban con reglas de buena práctica y con criterios geométricos. Los constructores, desconocedores de las nociones de las fuerzas y sus líneas de acción, tuvieron que utilizar reglas en forma de proporciones o bien hacer modelos. Estos criterios empíricos no deberían ser tan absurdos pues, como indica Huerta (1996:18), la prueba es que muchas estructuras construidas en la época “pre-científica” -donde se incluyen todas las catedrales góticas-, fueron concebidas de esta forma.

Los secretos del oficio, guardados celosamente por los gremios y transmitidos oralmente, en un lenguaje hermético y oscurantista, empiezan a difundirse con los tratados de Arquitectura a partir del siglo XVI. Diego de Sagredo (1524), Alberti (1582) o Palladio (1625) encabezan un listado de tratadistas que divulgan el pensamiento arquitectónico renacentista.

Pont Neuf, Toulouse. Imagen: © V. Yepes, 2017

Alberti[1] es el primer autor que establece, en 1452, las reglas para conseguir la estabilidad y constructibilidad de un puente de fábrica. Su tratado de arquitectura, De re aedificatoria, fue un compendio del saber constructivo de su época (Huerta, 2000:514). Sin embargo la edición en latín se publicó en 1485 –antes que la primera edición de Vitruvio[2]– y en España no se tradujo hasta 1582. La intuición mecánica de Alberti le sugiere que la forma del arco es la base para valorar su modo de trabajar: “El arco poco curvo es seguro para su propio peso, pero si se carga conviene componer muy bien su trasdós”, o bien: “El arco muy curvado será en sí mismo débil, cuanto más se carga menos problemas tendrá en su trasdós”. Cuanto más apuntado es un arco, es decir, cuanta mayor sensación visual da de no caer, más resistencia se le confiere.

Palladio[3], en su tratado I Quattro Libri dell’Architettura, de 1570, recoge el dimensionamiento de ejemplos de puentes romanos, dándolos como reglas prácticas.

Leonardo da Vinci[4] fue el primero que intentó estudiar los arcos desde el punto de vista mecánico, como muestran numerosos dibujos del Códice de Madrid, aunque sus análisis desconocían la ley del paralelogramo de fuerzas, fundamental en cualquier estudio estático, que no se resolvió hasta 1586 por Stevenin[5] (Heyman, 1999:92), si bien se formula en su forma actual en 1724 por Varignon[6] en su obra Nouvelle mécanicque.

Arco Leonardo

Códice de Leonardo da Vinci

La primera explicación científica del arco tuvo que esperar a Hooke[7], quien en 1676 apuntó que funcionaba justo al revés que un cable colgado, si bien no halló la ecuación matemática de dicha curva. En 1697 Gregory[8], de forma independiente a Hooke, formula la condición de estabilidad del arco cuando menciona la catenaria como directriz óptima. En 1695, La Hire[9] idealiza las dovelas en bolas de billar y observa que la forma resultante es como si engarzaran en un cable perfectamente elástico y sin peso, definiéndose su forma como antifunicular[10], lo contrario del cuelgue natural. Por tanto, el trazado de un arco ideal pasaría por conocer el estado de carga al que está sometido, donde el peso propio del arco es uno de los componentes principales, lo cual implica un proceso iterativo para establecer la forma definitiva.

Puente la Reina, sobre el río Arga. Camino de Santiago, Navarra. Imagen: © V. Yepes

Couplet, ofreció en 1730 una solución completa al problema, estableciendo el modo de colapso del arco por formación de un mecanismo de cuatro barras; pero fue Coulomb[11] en 1773 quien retomó el problema prácticamente de nuevo, dando una solución sintética a todos los modos de colapso posibles. A finales de la década de 1830, Moseley y Méry desarrollan casi simultáneamente el concepto de línea de empujes, que debe situarse dentro del espesor del arco. En 1833 Navier[12] enuncia la regla del tercio central, por donde debía circular la línea de presiones para evitar las tracciones. Poncelet[13], en 1835, desarrolla un método gráfico que ahorra considerablemente los tiempos de cálculo. Rankine[14] fue el primero en dar una aplicación práctica a la línea de empujes, siendo Barlow y Fuller los encargados de desarrollar la parte gráfica. En 1879 Castigliano[15]abre un nuevo enfoque analítico con planteamientos energéticos, sistematizándose a partir de ese momento el análisis de los arcos de fábrica. Ese mismo año Winkler propuso de forma explícita la aplicación de la teoría elástica para determinar la posición de la línea de empujes.

Sin embargo, el cálculo elástico, a pesar de su racionalidad, plantea sistemas de ecuaciones que son muy sensibles a las pequeñas variaciones en las condiciones de equilibrio (ver Huerta, 2005:78). Los procedimientos desarrollados por Heyman (1966) aplicando la teoría del análisis límite, validando el siguiente supuesto: si existe una configuración de equilibrio, es decir, una línea de empujes contenida dentro del arco, éste no se hundirá. Como consecuencia, la labor del calculista no es buscar el estado de equilibrio real del arco, sino encontrar estados razonables de equilibrio para la estructura estudiada (Heyman, 1967). Este ha sido el enfoque implícito en los diseños geométricos de los maestros de la antigüedad, tal y como indica Huerta (2005:81), justificando la validez de dichos planteamientos. Una recopilación del desarrollo histórico de la teoría del arco de fábrica puede seguirse en Huerta (1999, 2005).
Ejemplo de puente arco de madera. Cangas de Onís (Asturias). Fotografía V. Yepes.

Puente arco de madera. Cangas de Onís (Asturias). Imagen: © V. Yepes, 2010


[1] Leon Battista Alberti (1404-1472), fue arquitecto, matemático, humanista y poeta italiano.

[2] El texto fue descubierto en 1414 por Bracciolini. La edición princeps de la obra vitruviana fue publicada en latín por Giovani Suplicio da Verole en 1486, y en su epístola al cardenal Rafael Riario, se llama a esta obra divinum opus Vitruvi (Blánquez, 2007:XVII). En italiano no se imprimió hasta 1521 y en castellano hasta 1582.

[3] Andrea di Pietro della Góndola, más conocido como Andrea Palladio (1508-1580) fue un reconocido arquitecto italiano del Manierismo, que influyó notablemente en el Neoclasicismo. Una importante aportación a la ingeniería estructural fue la introducción del concepto de cercha o entramado.

[4] Leonardo di ser Piero da Vinci (1452-1519), nacido en Florencia, fue pintor y polímata, genial arquetipo del humanismo renacentista.

[5] Simón Stevenin (1548-1620), fue matemático holandés, ingeniero militar e hidráulico, entre otros oficios.

[6] Pierre Varignon (1654-1722), matemático francés precursor del cálculo infinitesimal, desarrolló la estática de estructuras.

[7] Robert Hooke, científico inglés (1635-1703). Formuló su famosa ley en la que describe cómo un cuerpo elástico se estira de forma proporcional a la fuerza que se ejerce sobre él. En esta época, para reclamar la paternidad de un descubrimiento, los hombres de ciencia enviaban anagramas a sus colegas para, después, cuando las circunstancias eran propicias, les hacían llegar o publicaban el mensaje que los anagramas escondías. Eso fue lo que ocurrió con la descripción que hizo Hooke en 1676 sobre el funcionamiento estructural del arco.

[8] David Gregory (1661-1708), profesor escocés de matemáticas y astronomía en la Universidad de Edimburgo.

[9] Philippe de La Hire, matemático, astrónomo y gnomonicista francés (1640-1719). La obra donde trata el arco es: Traité de mécanique: ou l’on explique tout ce qui est nécessaire dans la pratique des arts, & les propriétés des corps pesants lesquelles ont un plus grand usage dans la physique (1695).

[10] Del latín, funicŭlus, cuerda. Arenas (1996:10) define la antifunicularidad como una afinidad geométrica entre las ordenadas de la directriz de la bóveda y la ley de momentos flectores que produce el sistema de cargas sobre una viga virtual de la misma luz que el arco.

[11] Charles Agustin de Coulomb, físico e ingeniero militar francés (1736-1806), conocido por su famosa ley sobre atracción de cargas eléctricas. Elaboró en el campo estructural la actual teoría de la flexión y una primera teoría de la torsión (1787). También fueron importantes sus ideas sobre la deformación tangencial y el rozamiento.

[12] Claude Louis Marie Henri Navier, ingeniero y físico francés (1785-1836), trabajó en las matemáticas aplicadas a la ingeniería, la elasticidad y la mecánica de fluidos.

[13] Jean Victor Poncelet (1788-1867) fue un matemático e ingeniero francés que recuperó la geometría proyectiva.

[14] William John Macquorn Rankine, ingeniero y físico escocés (1820-1872), conocido también por sus trabajos en termodinámica.

[15] Carlo Alberto Castigliano, ingeniero italiano (1847-1884), elaboró nuevos métodos de análisis para sistemas elásticos.

REFERENCIAS

HEYMAN, J. (1966). The stone skeleton. International Journal of Solids and Structures, 2: 249-279.

HEYMAN, J. (1967). On the shell solutions of masonry domes. International Journal of Solids and Structures, 3: 227-241.

HEYMAN, J. (1999). Teoría, historia y restauración de estructuras de fábrica. CEHOPU, 2ª edición, Madrid.

HUERTA, S. (1996). La teoría del arco de fábrica: desarrollo histórico. Obra Pública, 38:18-29.

HUERTA, S. (2000): Estética y geometría: el proyecto de puentes de fábrica en los siglos XV al XVII, en Graciani, A.; Huerta, S.; Rabasa, E.; Tabales, M. (eds.): Actas del Tercer Congreso Nacional de Historia de la Construcción. Instituto Juan de Herrera/CEHOPU, Sevilla, 513-526.

HUERTA, S. (2005). Mecánica de las bóvedas de fábrica: el enfoque del equilibrio. Informes de la Construcción, 56(496):73-89.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

30 agosto, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  |  

¿Cómo se han construido los arcos de dovelas desde los romanos?

Puente de la Trinidad, sobre el cauce del río Turia, en Valencia. (Fotografía de Víctor Yepes, 2010).

Con este post vamos a seguir divulgando procesos constructivos históricos, en este caso, con el arco. En otros posts anteriores ya comentamos el origen del arco y su diseño. Espero que os gusten estas pinceladas de procedimientos de construcción ya históricos. Os dejo algunas referencias bibliográficas (Yepes, 2010) y enlaces a otras páginas web para que podáis ampliar la información, que es necesariamente breve para el formato de este post.

Los romanos construyeron con arcos de medio punto. Esta disposición geométrica era de composición cómoda, pues resultaba muy sencillo trazar la directriz y relativamente fácil construir la cimbra –normalmente compuesta por al menos dos arcos de círculo de madera sólidamente triangulados-. Las cimbras se construían con cerchas o armaduras de madera, unidas por correas sobre las que se clavaban tablas o listones para formar el forro o superficie de apoyo para las dovelas. El perfilado de la superficie de asiento se terminaba por medio de una ligera capa de mortero, yeso o barro (Moreno, 1985). (más…)

8 agosto, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

¿Es fácil optimizar estructuras de hormigón?

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejos algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)
26 julio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  |  

Un esbozo sobre la ingeniería en Mesopotamia

Entre los ríos Tigris y Éufrates

Entre los ríos Tigris y Éufrates

Es evidente que, en un pequeño post como éste, resulta atrevido cualquier intento de explicar la ingeniería de las primeras civilizaciones. Sin embargo, parte de lo que somos como ingenieros hay que buscarlo allí. Vamos, pues, a dar dos pinceladas sobre algunas de la técnicas que se originaron en las antiguas tierras del Oriente Próximo, a sabiendas que dejamos muchísimo por el camino.

La “tierra entre ríos”, Mesopotamia, entre el Tigris y el Éufrates, fue no sólo cuna de las primeras civilizaciones, sino también de las técnicas constructivas. Hubo otros logros en la Antigüedad, quizás no tan espectaculares como las pirámides pero con un mayor impacto en el desarrollo de la Humanidad, como la construcción de canales y acueductos, que hicieron posible la aparición de ciudades y la expansión de la agricultura. Mucho antes del 3000 a.C., los Sumerios habían drenado las marismas del Golfo Pérsico y construido canales para irrigación. La ingeniería subterránea, tal como la entendemos actualmente, tuvo sus comienzos en Babilonia hacia el 2180 a.C. con la construcción de un túnel bajo el río Éufrates, de unos 900 m de longitud y una sección de 3.60 x 4.50 m2. Del mismo modo, la sustitución de la energía humana por otros tipos de energía, o el desarrollo de estas nuevas fuentes han supuesto igualmente hitos fundamentales en el desarrollo de la técnica. El uso de bueyes y, posteriormente con la aparición del arado, de caballos (más rápidos y eficientes que los bueyes), permitió al hombre disponer de nuevas fuentes motrices. En este sentido, el salto más importante se dio al reemplazar la energía animal por la mecánica, dando inicio al periodo que se conoce como Revolución Industrial.

Los sistemas de construcción se desarrollaron ampliamente en Mesopotamia; los sistemas de ingeniería hidráulica y sanitaria, los caminos, los puentes y las artes navales de los imperios asirios, babilonios y otros pueblos de esa región. Gracias a la naturaleza arcillosa del suelo, esta civilización comenzó usando este material para la obtención de adobes o ladrillos cocidos, material poco resistente que explica el alto grado de deterioro de las construcciones encontradas. En el siglo VII a.C. constituye el principal material empleado en las construcciones de Nabucodonosor; los relatos de Herodoto estipulan que los muelles y las fortificaciones eran en parte construidos con este mismo material. Los asirios recurrían al ladrillo cocido sólo en los casos en que la humedad hubiese disgregado la arcilla. El betún, abundante en Caldea, también se empleó como material de construcción. Formaba una argamasa impermeable muy utilizada, que estaba compuesta, además, de cal, arena y agua.

Respecto a las técnicas de construcción, los constructores babilónicos no cavaban nunca cimientos, pensaban que como sus tierras poseían demasiada agua, el fondo sólido debería de estar lejos, por lo que renunciaban a alcanzarlo y se apoyaban directamente sobre el suelo interponiendo entre ese y el edificio un macizo de asiento. Como podemos ver se empieza a perfilar lo que hoy conocemos como Geotecnica, en cuanto a la clasificación y características del terreno.

Las comunicaciones también fueron un referente en el Oriente Medio, siendo a mediados del IV milenio cuando empezaron a trazarse las primeras carreteras que permitieron enlazar las numerosas ciudades mesopotámicas. Así, la primera carretera de larga distancia es la llamada “Ruta Real“, que ya en el siglo VI a.C. unían las ciudades de Persépolis con Sardes (capital de Lidia), a más de 2500 km de distancia. Su prolongación hacia el este formaría la Ruta de la Seda.

Los arcos y las bóvedas tuvieron su origen en las marismas del bajo Egipto o en Mesopotamia. El prototipo de éstos lo constituía una serie de haces de juncos colocados verticalmente en el suelo, doblados hacia el centro y unidos por su extremo superior, formando así un techo. La superficie exterior se cubría con una capa de barro. Los historiadores indican que en Mesopotamia se inició la tradición de que un político inaugure la construcción de un edificio público con una palada de tierra.

Durante la mayor parte de la historia faraónica se construyeron arcos y bóvedas radiales, de manera esporádica, en tumbas y puertas monumentales. El arco y la bóveda radial fueron, sin embargo, más utilizados en Mesopotamia, en donde evolucionaron seguramente de forma independiente y más o menos al mismo tiempo que en Egipto. Los constructores de Asiria conocían la bóveda de ladrillo y la empleaban a causa de la falta de madera, aunque las únicas que han llegado hasta nuestros días son bóvedas de galerías.

Mención especial hay que hacer de los zigurats o pirámides escalonadas representativas de las culturas sumerias, babilónicas y asirias. La bíblica Torre de Babel podría ser una de estas construcciones babilónicas.

Dur-Untash, o Choqa zanbil, construido en el siglo XIII a. C. por Untash Napirisha, es uno de los zigurats mejor conservados. Se encuentra cerca de Susa, Irán.

Es evidente, por tanto, que el mundo antiguo percibió a la ingeniería como un quehacer que competía con las fuerzas naturales y las dominaba, como una profesión atenta a la invención de los ingenios de guerra, de las máquinas de extracción del agua, de los caminos, de los canales, de los puentes, del desecamiento de los pantanos, de las galerías subterráneas, de los grandes ingenios portuarios, de las defensas de las ciudades…

Resulta también de gran interés destacar la primera huella demostrada de la existencia de normas legales reguladoras de la responsabilidad civil de la profesión. Se trata del famoso código de Hammurabi, rey babilónico entre los años 1792 y 1750 a.C., cuyos artículos 229 y 230 establecen que, de producirse el derrumbe culpable de una obra o edificio causando la muerte del cliente, el arquitecto, amén de reparar a su costa los daños, debía pagar con su vida, o con la de un hijo suyo si la víctima fuese uno del propietario. Un comienzo algo brusco desde nuestra perspectiva moderna, pero ciertamente precursor de las normativas que sobre construcción han ido apareciendo a lo largo de la Historia.

Referencias

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

20 julio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

¿Existió ingeniería en la “oscura” Edad Media?

Puente Alcántara en Toledo

Puente Alcántara en Toledo (Fotografía de V. Yepes, 2012).

Muchos catalogan, desde mi punto de vista de forma poco acertada, a la extensa Edad Media como un periodo oscuro, bárbaro, donde el retroceso de la civilización conocida fue tremendo y donde no existen hitos o avances dignos de mención, ni tampoco en el ámbito de la construcción y la ingeniería. Trataremos de ver en esta pequeña nota que no es este extremo del todo cierto. Seguimos en este post con otros anteriores que ya trataron de la historia de la ingeniería en la prehistoria, en la antigua China, Mesopotamia, Grecia, etc.

La caída de Roma es sinónimo del fin de los tiempos antiguos. En el tiempo que siguió, el periodo medieval, la legislación de castas y la influencia religiosa retardaron considerablemente el desarrollo de la ingeniería. Hasta casi el siglo XIX la evolución de la construcción se centra en la arquitectura y los tipos estructurales, y muy poco en otros aspectos como los materiales. Muchos historiadores llaman “El Oscurantismo” al periodo de 600 a 1000 d.C., la denominada Alta Edad Media. Durante este lapso dejaron de existir la ingeniería y arquitectura como profesiones. La construcción queda en manos de los artesanos, tales como los maestros albañiles , que diseñaban las catedrales, delineaban los planos y supervisaban el trabajo de construcción, mientras que los mamposteros y otros artesanos proporcionaban la mano de obra especializada para construir. Europa entra en una recesión constructiva muy importante, mientras que esto no ocurre en los países islámicos mediterráneos ni incluso en otros más lejanos como China e India. Fue durante este período cuando se usó por primera vez la palabra Ingeniero. El término ingeniator aparece ya a finales del siglo VIII o principios del IX relacionado con obras públicas, fortificaciones y máquinas de carácter militar. Ese era el nombre del operador de una catapulta usada en el ataque de las murallas de defensa de las ciudades.

Normalmente se piensa en la Edad Media como un periodo de estancamiento caracterizado por la falta de progreso social. Sin embargo, algunas de las más grandes creaciones arquitectónicas de la Humanidad, las catedrales y los castillos, datan de la época que podríamos llamar como Baja Edad Media, que terminaría en 1492 con el descubrimiento de América, o en 1453 con la caída del Imperio bizantino, fecha que tiene la ventaja de coincidir con la invención de la imprenta (Biblia de Gutenberg) y con el fin de la Guerra de los Cien Años.  En esta misma época, y gracias al Islam, en España existe un desarrollo técnico, e incluso científico, muy superior al del resto de Europa, como, por ejemplo, la importancia y perfección de los sistemas de riego y diques construidos en nuestro país, superado únicamente por los romanos.

Catedral de Burgos

Catedral de Burgos. Su construcción comenzó en 1221, siguiendo patrones góticos franceses.

Los siglos XI y XII fueron testigos de una explosión constructora, tanto pública como privada, en edificación de castillos e iglesias. Los maestros constructores reemplazaron los techos planos de madera por grandes cúpulas de piedra conocidas como bóvedas de cañón o bóvedas cilíndricas. Las catedrales se construyeron en estilo románico, con maestros constructores que se desplazaban a lo largo de toda Europa, lo cual garantizó cierta homogeneidad. Las pesadas bóvedas de piedra de las iglesias románicas exigían pilares y muros masivos para soportarlas, con estrechas ventanas que también fueron características de los castillos de dicho periodo.

A partir del siglo XII se incorporó la bóveda y los arcos punteados dando lugar a las construcciones más esbeltas y de mayor altura de las catedrales góticas. También se introdujo el concepto de contrafuerte, que básicamente era un pilar de piedra muy arqueado que se construía fuera de los muros, posibilitando la distribución del peso de los techos abovedados de la iglesia en dirección hacia abajo y hacia afuera, lo cual eliminó los pesados muros que soportaban las enormes bóvedas cilíndricas.

En España se configuró durante la baja Edad Media dos sistemas constructivos diferentes. Uno, con predominio de la cantería, que construyó las catedrales románicas y góticas; el otro, con predominio de la albañilería y la carpintería, que construye los edificios islámicos y mudéjares. Durante el siglo XV hasta el XVI, poco a poco se produce una hibridación que culmina con El Escorial donde cuaja un sistema constructivo español, que con algunas variantes, perdurará hasta la Revolución Industrial.

Una gran parte de los conocimientos logrados por los árabes en enseñanza y técnica y que se depositaron en España durante la Reconquista, fueron absorbidos posteriormente por la cultura europea en un proceso que duró dos siglos y que terminó hacia el año 1100. Las prolongadas contiendas en España entre el Islam y el Cristianismo, hicieron que se diera gran importancia a la construcción de castillos y ciudades amuralladas. En la España musulmana fueron, obviamente, hispanoárabes los ingenieros que construyeron y repararon los puentes, las calzadas y los azudes. Entre los más conocidos destacamos Halaf, que construyó el puente de Alcántara de Toledo en el siglo X; o bien El Hach Yaix que tendió el primitivo puente de Triana en Sevilla y restauró la conducción romana de Los Caños de Carmona y llevó el agua a Sevilla en 1172.

Castillo medieval del siglo XII, actualmente Parador de Sigüenza (Guadalajara).

Castillo medieval del siglo XII, actualmente Parador de Sigüenza (Guadalajara).

La construcción de los castillos era una tarea ardua y costosa. Se requerían oficios especializados como maestros albañiles, canteros, etcétera, que se desplazaban de un lugar a otro y eran muy demandados. Una de las técnicas constructivas más habituales era la mampostería, con el relleno de escombros y de argamasa.

Una figura interesante, entre los ingenieros medievales, es la del “cavacequias”, que abundó, tras la conquista, en los territorios de la Corona de Aragón. Pedro Raimundo de Sassala, conocido como Pere Cavacèquies, construyó hacia 1180 la acequia de Piñana. Entre los constructores de la acequia Real del Júcar hay que señalar a Arnaldo Vidal y al maestro acequiero Bofill, a quien en 1260 autorizó el rey don Jaime I para vender las heredades que le habían correspondido en pago de su trabajo.

Cuando a partir del siglo XI empezaron a repararse las infraestructuras, fue la Iglesia la encargada de la reconstrucción de puentes y calzadas. Las calzadas son la primera expresión constructiva de la Alta Edad Media, y gracias a las calzadas aparece el intercambio del conocimiento arquitectónico que permite pasar del románico al gótico. En toda Europa surgieron monjes ingenieros que estudiaron a los clásicos y que transmitieron oralmente la tradición constructora. Entre los más conocidos se encuentran el francés San Benezet, autor del famoso puente de Avignon y el inglés Meter Colechurch que, entre los siglos XII y XIII, construyó el puente viejo de Londres. En España hubo monjes pontoneros muy célebres que fueron incluso venerados como santos: San Pedro González construyó un puente sobre el Miño, o San Ermengol, autor de un puente sobre el Segre. Sin embargo el más famoso fue Santo Domingo de la Calzada (patrono de las obras públicas españolas), que reparó el camino de Santiago y edificó un puente sobre el Oja y los de Logroño sobre el Ebro, y Nájera, sobre el Najerilla. Conviene resaltar aquí también que el primer puente sobre pontones del cual se tiene referencia lo construyeron los ingenieros militares en la toma de Sevilla por Fernando III el Santo, en 1248, para facilitar el paso de las tropas por el río Guadalquivir. Estas infraestructuras de caminos y puentes van a facilitar la Reconquista en España.

En el siglo XIII, Santo Tomás de Aquino argumentó que ciencia y religión eran compatibles. Ghazzali, erudito en ciencia y filosofía griegas, llegó a la conclusión de que la ciencia alejaba a las personas de Dios, por lo que era mala. Los europeos siguieron a Santo Tomás, en tanto que el Islam siguió a Ghazzali. En medida, esta diferencia en filosofía es la que subyace al tan distinto desarrollo técnico en estas dos culturas. El historiador Harvey (1970) afirma: “la principal gloria de la Edad Media no fueron sus catedrales, su épica o su escolástica: fue la construcción, por primera vez en la historia, de una civilización compleja que no se basó en las espaldas sudorosas de esclavos o peones sino primordialmente en fuerza no humana“. Esto porque la revolución medieval de la fuerza y la potencia es uno de los desarrollos más dramáticos e importantes de la historia. Obviamente que un estímulo para este desarrollo fue la decadencia de la institución de la esclavitud y el continuo crecimiento del cristianismo. Las principales fuentes de potencia fueron la fuerza hidráulica, el viento y el caballo, que se concretaron en las ruedas y turbinas hidráulicas, los molinos de viento y las velas, las carretas y los carruajes. Tampoco hay que olvidar el uso de palancas y poleas, y el aumento en la capacidad de carga en los barcos.

El cristianismo hizo desarrollar la construcción en expresiones tan maravillosas y sacras como las catedrales góticas y el Islam las mezquitas. Los ingenieros medievales elevaron la técnica de la construcción, en la forma marco gótico y los arbotantes, hasta alturas desconocidas por los romanos. La mayoría de las catedrales góticas presenta una estructura optimizada desde el punto de vista geométrico y compositivo ante las necesidades resistentes motivadas por la acción gravitatoria (Roca y Lodos, 2001). Sus constructores supieron extraer el mayor provecho del material para ellos disponible, otorgando a los elementos unas dimensiones y unas esbelteces que prácticamente se hallan en el extremo de lo razonablemente posible. Lo más admirable es que dichos constructores no tuvieron la capacidad de cálculo de la que se dispone en la actualidad.

Los estilos arquitectónicos de la Edad Media, el románico y el gótico, se caracterizan fundamentalmente por la utilización de la bóveda de piedra para cubrir los espacios públicos, tanto religiosos como civiles. El románico utiliza la bóveda de cañón y la bóveda por arista, y el gótico las bóvedas nervadas de crucería. Este dominio se refleja claramente en los puentes de este periodo. Pero, tal y como indica Fernández Troyano (2005), ello no quiere decir que se superara la calidad de los puentes romanos, aunque sí se puede decir que, en general, los puentes medievales son más esbeltos en lo que se refiere a la esbeltez de los arcos y a la relación entre el ancho de las pilas y la luz de los arcos.

La utilización de la zapata independiente en edificios es debida a la aparición del estilo gótico, pues las grandes luces y el uso de columnas aisladas provocan la separación de las plataformas usadas anteriormente. Las dimensiones de los cimientos en raras ocasiones estaban determinadas por las cargas que actuaban sobre ellas. Cuando se producía un accidente, se ensanchaba la parte defectuosa hasta que la carga era soportada de modo adecuado.

Construyendo una iglesia en el siglo XIV. (Jensenius, 2000)

Construyendo una iglesia en el siglo XIV.

Durante el siglo XI en Italia se produce el colapso de importantes edificios, debido a fallos de sus cimentaciones y son muchos los campaniles que sufren inclinaciones, algunos de los cuales han continuado su movimiento hasta nuestros días, como es el caso de la torre de Pisa. Este puede ser considerado uno de los grandes errores de los constructores y arquitectos de la Edad Media en Italia, una torre excesivamente pesada para la escasa calidad del suelo donde se cimentó.

Vías, puentes, canales, túneles, diques, puertos, muelles y máquinas se construyeron en la Edad Media con un conocimiento que todavía maravilla en la actualidad. El libro de bosquejos del ingeniero francés Villard de Honnecourt revela un amplio conocimiento de las matemáticas, la geometría, las ciencias naturales y la artesanía. Sin embargo, desde la alta Edad Media y hasta finales de la Edad Moderna el oficio de ingeniero fue una actividad gremial cuyos conocimientos se transmitían de padres a hijos o entre convecinos del mismo concejo.

Como se puede comprobar, materia no falta para poder evaluar los logros en construcción e ingeniería de esta época. Seguro que nos hemos dejado muchísima información de gran interés por el camino. Pero siempre tendremos la oportunidad de otros posts para ir aumentando la información y comentarla.

Referencias

FERNÁNDEZ TROYANO, L. (2005). Variantes morfológicas de los puentes medievales españoles. Revista de Obras Públicas, 3459: 11-32.

HARVEY, J. (1970). The Gothic World 1100-1600. B.T. Bastford, London.

ROCA, P.; LODOS, J.C. (2001). Análisis estructural de catedrales góticas. OP ingeniería y territorio, 56: 38-47.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

17 julio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia