UPV



Search Results By Etiquetas: hormigon


Valoración social del ciclo de vida de un puente en un ambiente agresivo

Acaban de publicarnos un artículo en la revista Environmental Impact Assessment Review (primer decil del JCR), de la editorial ELSEVIER, en el que se realiza una valoración del impacto social a lo largo del ciclo de vida de un puente de hormigón sometido a un ambiente costero, donde los clorhídricos suponen una agresión que supone un mantenimiento de la infraestructura.

En el trabajo se analizan 15 alternativas diferentes durante el mantenimiento en relación con los impactos sociales. Los resultados indican que el uso de acero inoxidable en las armaduras y la adición de humo de sílice son preferibles a otras alternativas convencionales. Os dejo a continuación el resumen y las conclusiones.

Además, la editorial ELSEVIER nos permite la distribución gratuita del artículo hasta el 11 de julio de 2018. Por tanto, os paso el enlace para que os podáis descargar este artículo: https://authors.elsevier.com/a/1X5QpiZ5swxFZ

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003

Abstract:

Sustainable design of structures includes environmental and economic aspects; social aspects throughout the life cycle of the structure, however, are not always adequately assessed. This study evaluates the social contribution of a concrete bridge deck. The social performance of the different design alternatives is estimated taking into account the impacts derived from both the construction and the maintenance phases of the infrastructure under conditions of uncertainty. Uncertain inputs related to social context are treated through Beta-PERT distributions. Maintenance needs for the different materials are estimated by means of a reliability based durability evaluation. Results show that social impacts resulting from the service life of bridges are not to be neglected in sustainability assessments of such structures. Designs that minimize maintenance operations throughout the service life, such as using stainless steel rebars or silica fume containing concretes, are socially preferable to conventional designs. The results can complement economic and environmental sustainability assessments of bridge structures.

Keywords:

Social life cycle assessmentChloride corrosionPreventive measuresGuidelinesConcrete bridgeSustainable design

Highlights:

  • Social Life Cycle Assessment of different design strategies for bridge decks in marine environments.
  • 15 design alternatives were studied and compared according to the Guidelines methodology.
  • Less maintenance results in better social performance.
  • Impacts during maintenance phase are main contributors to social performance
  • Stainless steel and the addition of silica fume are socially preferable to conventional designs.

 

 

 

Cimbra porticada en la construcción de puentes

Cimbra porticada. Imagen V. Yepes (1991)

La cimbra diáfana o porticada, se usa cuando se hace necesario ejecutar una cimbra de un paso superior sobre un obstáculo, no siendo posible el uso de una cimbra cuajada. Como su nombre indica, está formada por pórticos, que concentran y transmiten  las cargas al terreno. Las estructuras a cimbrar suelen ser arcos, acueductos y viaductos.

La cimbra porticada se utiliza en los siguientes casos:

  • Cuando la estructuras a cimbras se encuentra a una altura superior a 16 metros con respecto a la superficie de apoyo de la cimbra, con lo que se tendría demasiados elementos que montar, con el consiguiente coste de dinero y tiempo de montaje.
  • Cuando la superficie de apoyo no tiene la suficiente capacidad, y es necesario concentrar las cargas en zonas de apoyo predeterminadas que estén en buenas condiciones portantes.
  • Cuando existan servidumbres a respetar en la zona de instalación de la cimbra, y haya que sortearlas.
  • Cuando es necesario permitir el paso de tráfico preexistente, o también el tráfico propio de la obra.
  • Cuando existan accidentes orográficos (ríos, rías, vaguadas, arroyos, zonas escarpadas…)
  • Cuando la estructura tiene un número múltiple de vanos, que hacen posible la reutilización de los módulos de cimbra mediante cambio, ripado, etc…

Cimbra porticada. Imagen: V. Yepes (1992)

Estas cimbras permiten salvar luces de 6 a 16 m con unos soportes que trasladan la carga al terreno. Estos soportes permiten cargas de 120 a 450 kN, aunque en algunos casos especiales pueden llegar a soportar 2000 kN. Estas cimbras se componen de pilas y vigas articuladas, con sección triangular o cuadrangular. Se utilizan elementos de acero de alta resistencia desmontables. Los pilares se ensamblan con módulos planos formados por tubos de perfil circular. De esta forma, el pilar se forma con acoplamiento de elementos planos unitarios, formando módulos entre 0,75 y 2,50 m. Además, su altura se regula en sus extremos mediante husillos roscados. Las vigas se montan con módulos de perfiles tubulares ensamblados mediante bulones. Además de vigas articuladas, se pueden utilizar jácenas, donde se añade un atirantado a las vigas para aumentar el canto resistente.

La cimbra es una estructura provisional que requiere su propio proyecto y cálculo, con una especial atención a las hipótesis de carga, a su cimentación y los detalles de diseño y montaje. No son extraños los accidentes, especialmente con las cimbras diáfanas, al carecer de un proyecto adecuado. Dicho proyecto y las operaciones de montaje y desmontaje de estos elementos suele depender de una empresa especializada. Se debe exigir que la cimbra sea estable, especialmente a pandeo, y que las deformaciones previstas se compensen con las contraflechas necesarias.

Os paso a continuación un vídeo donde podéis ver este tipo de cimbra utilizada en la construcción de puentes.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

11 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Elementos de una cimbra autolanzable

Figura 1. Autocimbra bajo tablero. https://civilengineer-online.com

En este post vamos a describir los elementos que constituyen una autocimbra, la función de cada elemento dentro del sistema y analizaremos las conexiones entre cada uno de dichos elementos. Remitimos al lector a otros posts anteriores donde se clasificaba este medio auxiliar de construcción de puentes y se comparaba respecto a otros procedimientos constructivos.

Vigas longitudinales

Son las estructuras longitudinales que conforman la autocimbra (Figura 1). Sirven para apoyar (autocimbras bajo tablero) o suspender (autocimbras sobre tablero) el encofrado de un vano. Normalmente están conformadas por vigas en celosía metálicas, aunque también pueden ser vigas de alma llena con luces de mayor dimensión. Al tratarse de una estructura móvil, se hace necesario examinar con mucho detenimiento las posiciones más críticas de cada elemento.

Vigas transversales y encofrado del tablero

El encofrado se soporta por una estructura de vigas transversales, que a su vez, se apoya sobre la estructura longitudinal. Uno de los puntos a tener en cuenta es el paso de estas vigas transversales a través de las pilas del puente. El encofrado exterior sirve de soporte y molde a la superficie exterior del tablero de hormigón. Este encofrado debe disponer de juego en las juntas para absorber ligeras modificaciones geométricas. Este encofrado, por razones económicas, debe soportar más de 12 puestas, aunque en algunos casos se llega a más de 50. En el caso de secciones en cajón, existe un encofrado interior. En este caso, el hormigonado puede realizarse en una o dos fases. Si se realiza en una fase, el encofrado debe replegarse o transportarse para salvar el paso del diafragma de la pila. Si se hormigona en dos fases, se debe retirar este encofrado interior por medios de elevación.

Figura 2. Paso de autocimbra sobre tablero por pila. www.alpisea.com

Apoyos en las pilas y en el tablero

La estructura longitudinal de la autocimbra descansa sobre apoyos a ménsulas colocados en las pilas del puente. En las cimbras autolanzables bajo tablero el apoyo sobre la pila delantera se realiza sobre ménsulas (Figura 1), aunque también podría utilizarse torres auxiliares (Figura 3). En el caso de autocimbra sobre tablero, el apoyo sobre la pila delantera se realiza sobre una estructura metálica. El apoyo trasero de la autocimbra sobre tablero se realiza sobre el voladizo del tablero ya construido o bien sobre la pila. El apoyo trasero de la autocimbra bajo tablero se realiza mediante una viga de cuelgue.

Figura 3. Apoyo delantero de la viga longitudinal de autocimbra sobre tablero. www.crsic.cn

Sistemas hidráulicos, mecánicos y eléctricos

Estos sistemas permiten realizar los distintos movimientos de la autocimbra: longitudinal para avanzar de un vano a otro, vertical para la puesta a cota y descimbrado, y transversal y/o abatimiento de encofrado para permitir el paso de éste por la pila delantera.

A continuación se muestra un esquema general de elementos, tanto para una cimbra bajo tablero (Figura 4) como sobre tablero (Figura 5).

Figura 4: Esquema general de elementos para una autocimbra bajo tablero. www.avensi.es/

 

Figura 5: Esquema general de elementos para una autocimbra sobre tablero. www.avensi.es/

Todo lo que os he descrito en el post os lo cuento en el siguiente Polimedia, que espero os guste.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

10 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

Parámetros para seleccionar una cimbra autolanzable

Figura 1. www.alpisea.com

Si en otros posts definimos lo que era una cimbra autolanzable, cómo se podía clasificar y se comparaba con otros procedimientos constructivos de puentes, en este post vamos a explicar la influencia de los distintos parámetros que intervienen en la utilización de las cimbras autolanzables, sus limitaciones y la influencia de las características geométricas del puente en su construcción.

Anchura de tablero

Las autocimbras suelen emplearse para anchuras de tablero comprendidas entre los 8,50 y los 16 m. Con tablero de anchuras mayores a 20 m, la construcción se realizaría en dos fases: en la primera se ejecutaría el núcleo central y en la segunda las alas con un carro de avance.

Se debe tener en cuenta que el número o la forma de las pilas va a condicionar las vigas principales de una autocimbra bajo tablero (Figura 1). Es posible que se necesite abrir el encofrado transversal, lo cual obliga a un correcto dimensionamiento de las vigas transversales.

Figura 2. www.ulmaconstruction.es

Pendientes y peraltes

Las autocimbras se pueden utilizar siempre que las pendientes no superen el 7% y los peraltes el 8%.

Radios en alzado y planta

Cuando se usan autocimbras sobre tablero, el radio mínimo en planta no debe ser inferior a los 200-300 m (Figura 2). Esta cifra puede subir a 400-500 m con autocimbras bajo tablero cuyos vanos superen los 40 m. Con estas limitaciones, sería posible realizar curvas en planta en forma de S.

Luces de vanos

Las autocimbras se utilizan habitualmente para vanos de luces mayores a 30 m, llegando alguna realización actual a los 90 m. Estas cifras son válidas siempre que no existan apoyos intermedios y sin que quede condicionado el dimensionamiento del tablero en la etapa constructiva. Si se utilizaran apoyos intermedios, podríamos alcanzar un mayor rango de luz. Por otra parte, la construcción de puentes con luces iguales supone una mejora en los rendimientos.

Canto del tablero

Es preferible que el canto del tablero de un puente sea constante si se va a construir mediante cimbras autolanzables. En el caso de que la geometría sea variable, se debería mantener dicho cambio de geometría en todos los vanos (Figura 3).

Figura 3. Viaducto de Ibaizabal (2012). Récord nacional de luz (75 m) en C.A. www.grupopuentes.com

Peso del tablero

Para un puente tipo con una luz de 60 m, es habitual un peso del tablero de 20 a 22 t/m, aunque podrían haber casos más pesados, con pesos superiores a 35 t/m, incluso con luces menores.

Diafragma de pilas

La forma del diafragma a su paso por las pilas depende de la forma en que se hormigone la sección transversal. Si el hormigonado se realiza en una sola fase, se debe permitir el paso del encofrado interior replegado por el interior del diafragma (Figura 4). Por otra parte, las dimensiones del paso del diafragma dependerán de la anchura y la altura de la sección en cajón.

Figura 4. Encofrado replegado para permitir el paso por el diafragma

A continuación os dejo un Polimedia donde se explica con mayor detalle lo anteriormente expuesto. Espero que os sea de interés.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

9 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

Clasificación de las cimbras autolanzables

Figura 1. Clasificación de las autocimbras

En un post anterior se definieron las cimbras autolanzables. Aquí vamos a clasificar las cimbras atendiendo a diversos criterios como son su ubicación, su sistema de ejecución y la sección del tablero (Figura 1). Se trata, por tanto, de diferenciar las distintas tipologías de autocimbras en función de esta clasificación.

Si atendemos a la ubicación de la autocimbra, ésta se puede clasificar en cimbras autolanzables sobre tablero, bajo tablero o a media altura. En las autocimbras sobre tablero, las vigas longitudinales se colocan por encima del tablero y de ellas cuelgan elementos que soportan las vigas donde se apoya el encofrado (Figura 2). Las autocimbras bajo tablero son las más habituales; aquí las vigas longitudinales principales se sitúan debajo del tablero a construir (Figura 3). Una variante de la cimbra bajo tablero es la situada a media altura; en este caso, las vigas longitudinales se colocan debajo de las alas y próximas a ellas (Figura 4). En este caso el fondo del tablero se encuentra por debajo o a la misma altura de las vigas.

Figura 2. Cimbra autolanzable sobre tablero

 

Figura 3. Cimbra autolanzable bajo tablero

 

Figura 4. Cimbra autolanzable a media altura. www.mecanotubo.es

Atendiendo al sistema de ejecución, la cimbra autolanzable propiamente dicha sería la que sirve para hormigonar el tablero “in situ”; es decir, primero se coloca la ferralla y luego se hormigona sobre el encofrado. Sin embargo, también se podrían incluir en esta clasificación aquellas cimbras autolanzables que sirven para colocar tramos prefabricados, bien dovelas o vanos completos. En este caso estaríamos hablando más de un lanzador de vigas o de dovelas que una autocimbra propiamente dicha.

Por último, si atendemos a la sección del tablero, las autocimbras sirven para construir tableros de losa aligerada, cuando las luces de vano están comprendidas entre los 30 y 40 m. El aligeramiento suele ser de poliestireno expandido. Otra opción son las secciones tipo Pi o multinervadas; en este caso no existe encofrado interior, la sección resulta muy ligera, se usa para luces máximas de 35 m. Como inconveniente se puede decir que precisa de grandes cantos para soportar los momentos negativos. La sección en cajón es la opción empleada tanto en cimbras por encima como por debajo del tablero, en luces entre 40 y 80 m. En este caso el encofrado interior complica el desencofrado y el rendimiento.

A continuación os dejo un Polimedia donde se explica con mayor detalle estos aspectos de la clasificación de las autocimbras.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

7 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

Definición de cimbra autolanzable

Viaductos en la nueva autovía de Mascara (Argelia). Imagen: A. Azorín

Una cimbra autolanzable es aquel medio auxiliar empleado para el hormigonado de tableros de puentes o viaductos vano a vano de hormigón postesado. También reciben el nombre de autocimbra, cimbra de avance o cimbra MSS (Movable Scaffolding System, en inglés). Son estructuras auxiliares capaces de trasladarse a lo largo del puente por sus propios medios, por lo que se trata realmente de una cimbra-máquina, con los problemas asociados de cálculo por su movilidad. La cimbra de avance se caracteriza por su capacidad de trasladarse de una posición a la siguiente por sus propios medios, lo cual disminuye el uso de grúas. Ello le permite salvar obstáculos o alturas importantes, así como evitar las posibles obstrucciones en vías de tránsito.

En este post os defino brevemente esta cimbra, pero en sucesivos posts seguiré dando detalles y explicando con mayor profundidad los tipos existentes, elementos, parámetros, etc.

La autocimbra es una estructura en celosía o cajones metálicos longitudinales que soportan el encofrado. Esta estructura es capaz de alcanzar la distancia existente entre las pilas del puente. Si el vano es inferior a 40 m, suelen emplearse vigas de longitud el doble del tramo, no usándose cimbras tipo regla de cálculo. Durante el hormigonado, la estructura se apoya en la pila delantera y en el tramo del tablero ya construido.

El uso habitual de esta cimbra es en tableros de puentes de hormigón postesado, preferentemente con vanos de luces iguales y con canto constante. Su aplicabilidad se encuentra entre luces de 30 y 70 m, aunque la cimbra autolanzable más grande del mundo alcanza vanos de 90 m. Para que os hagáis una idea, la Dirección General de Ferrocarriles, del Ministerio de Fomento, recomienda, con carácter general, usar la autocimbra por encima de 40 m de luz. Sin embargo, también recomienda utilizar la autocimbra en la construcción de tableros hiperestáticos de hormigón que cumplan alguna de las siguientes condiciones: (a) número de vanos entre 3 y 5, (b) cuando la longitud total del puente sea menor a 300 m, pero con 6 vanos o más, (c) cuando la longitud total del puente supere los 300 m, con 6 vanos o más y la altura del tablero respecto al suelo sea de 15 m o menos. En las referencias he dejado dichas recomendaciones completas.

El M1-90-S es la más grande cimbra autolanzable del mundo (vanos de 90 m). http://www.berd.eu/es/produtos/movable-scaffolding-system/

Con carácter general, se puede decir que la autocimbra es rentable cuando el puente tiene más de 7-8 vanos, más de 500 m de luz y se usa al menos cuatro veces. Para secciones de losa aligerada, las luces habituales suelen estar entre 30 y 40 m, mientras que para sección en cajón, se encuentran entre 40 y 70 m. También son rentables en el caso de construir puentes con doble tablero y existe facilidad de trasladar la autocimbra de uno al otro. También es favorable el caso de tener que construir diferentes viaductos de la misma obra si el traslado es factible.

Por otra parte, el procedimiento constructivo suponen esfuerzos que deben considerarse en el cálculo de la estructura. Se coloca la junta de construcción entre fases a una distancia entre L/4 y L/5 de la pila para reducir los flectores sobre el tablero. Además, a unos 2 m de la junta es donde se apoya la autocimbra sobre el tablero hormigonado. Las esbelteces normales del tablero oscilan entre 1/18 y 1/20.

La autocimbra transmite esfuerzos a la fase anterior durante el hormigonado. Se trata de una acción transitoria, no siendo raro que supere las 1000 t durante el hormigonado. Esta acción es como si la ley de flectores de peso propio al construir con autocimbra se desplazara hacia arriba. Sin embargo, al final del proceso constructivo los esfuerzos debidos a peso propio y al pretensado se redistribuyen, de forma que la ley de flectores se aproximará a la que tendría si se hubiese cimbrado el puente de forma convencional. Todo ello significa que las situaciones pésimas de comprobación serán en la sección del tablero en pilas a corto plazo y en la sección de centro de vano a largo plazo.

Todo lo que os he descrito en el post os lo cuento en el siguiente Polimedia, que espero os guste. En otros posts os contaré más detalles de las autocimbras como su clasificación, elementos o parámetros para seleccionarlas.

También os dejo una animación en la que se puede ver el funcionamiento de la autocimbra.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

MINISTERIO DE FOMENTO (2009). Recomendaciones de la Subdirección General Adjunta de Planes y Proyectos para el proyecto de sistemas constructivos en puentes ferroviarios de hormigón.

Descargar (PDF, 105KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

4 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

Mesas encofrantes o sistemas pre-montados

Figura 1. Encofrado de losa premontado Mesa VR de Ulma. https://www.ulmaconstruction.es/es-es/encofrados/encofrados-losas

Los sistemas de encofrados premontados para forjados, denominados encofrados de mesas o mesas encofrantes, son sistemas que permiten construir cualquier tipo de forjado, aunque está especialmente diseñado para la ejecución de losas macizas y forjados aligerados planos de gran dimensión y geometrías regulares y repetitivas. Las mesas encofrantes se componen de una estructura metálica, un tablero o bandeja y unas patas con ruedas orientables que soportan el conjunto. Además, al tratarse de un sistema industrializado, las mesas disponen de todos los elementos de seguridad integrados: barandillas, ganchos, cadenas de fijación, rodapiés, etc.

 

Se trata de una estructura que se monta al inicio de la obra y se traslada, sin desmontar, de una zona otra de la misma. Sirve de apoyo al encofrado -normalmente fenólico- montada sobre un carro que dispone de un mecanismo hidráulico que facilita el desencofrado y el traslado sin necesidad de grúa (Figura 2). Esta disposición evita el montaje y desmontaje de puntales. El sistema de mesa optimiza los tiempos de ejecución al ser su montaje y desencofrado sistemático, rápido y seguro, empleando pocas piezas sueltas y reduciendo la necesidad de mano de obra especializada. Su montaje es sencillo y el desencofrado rápido, al contar con sopandas entre las hileras de las mesas que soportan cada vano. Es habitual su uso en grandes edificios como centros comerciales, hoteles, hospitales, rascacielos, etc.

Figura 2. Carro para desplazamiento horizontal. Imagen: Alsina. http://www.construmatica.com/construpedia/images/2/20/Carro-con-dispositivo-hidr%C3%A1.jpg

Estos equipos pesan entre 500 y 600 kg, por lo que se pueden manejar con grúas convencionales. Es habitual un rendimiento para las mesas encofrantes, referido al metro cuadrado de encofrado y operario, de 10 a 15 minutos, lo cual contrasta con las 3-4 horas necesarias cuando el apuntamiento es vertical con puntales de madera, las 1,5-3 horas con puntales telescópicos o 0,5-1 horas con puntales regulables arriostrados.

Los componentes de un encofrado premontado se pueden ver en la Figura 3. Se trata del despiece de componentes de la Mesa VR de ULMA.

Figura 3. Componentes de un encofrado de losa premontado Mesa VR, de ULMA. https://www.ulmaconstruction.es/es-es/encofrados/encofrados-losas/encofrado-losa-premontado-mesa-vr

A continuación os dejo unos vídeos sobre este tipo de encofrado que espero sean de vuestro interés.

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados.Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

2 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

Componentes de una cimbra montada con elementos prefabricados

Figura 1. https://pixabay.com/es/sitio-las-obras-de-construcci%C3%B3n-592459/
CC0 Creative Commons

Las cimbras, según define la Norma Técnica de Prevención NTP-1069, son estructuras provisionales de apuntalamiento en altura, que sirven para la sustentación de las distintas plataformas, mesas o planchas de trabajo que conforman el encofrado, cumplen, según los casos, funciones de servicio, carga y protección. Las cimbras también se pueden utilizar como apeo para cualquier carga, por ejemplo: estructuras como apeo en fase de montaje, demoliciones, refuerzo de estructuras existentes frente cargas puntuales, etc.

Las torres de cimbra de componentes prefabricados son los más empleados, clasificándose según su método de rigidización, pues se puede triangular completamente en todos los planos verticales (Figura 1) o no.

Las cimbras permiten su funcionamiento como estructuras capaces de soportar cargas de diferente naturaleza. Los principales componentes y elementos principales son los siguientes:

  • Base regulable. Es una placa base metálica, dispuesta en la parte inferior de la torre de cimbra, que permite el apoyo sobre el terreno o cimentación durante el montaje y que, gracias a un husillo, se regula en altura para absorber de las irregularidades en la superficie de apoyo de la torre.
  • Cabezal en U. Se trata de una pieza metálica en U, situada en la parte superior de la torre, encima de los últimos montantes verticales, que permite el apoyo de las vigas primarias que soportan el encofrado.
  • Husillo. Consiste en un dispositivo metálico roscado, utilizado como componente principal en las bases regulables y en los cabezales en U. Es capaz de regular la altura de la cimbra y de liberarla de carga, para su descimbrado, a través de su descenso.
  • Montante. Es un elemento metálico vertical de la cimbra que transmite las cargas soportadas en la parte superior de la cimbra hasta el terreno o cimentación sobre la que se sustenta la torre de cimbra. Su montaje, arriostrado con el resto de los montantes verticales de la torre, configura lo que se denomina “módulos de la cimbra”.
  • Travesaño. Se trata de un elemento metálico horizontal de la cimbra, que conecta horizontalmente dos montantes verticales adyacentes, aumentado la rigidez y la resistencia vertical y estabilidad de la torre de cimbra.
  • Diagonal. Es un elemento metálico dispuesto en la torre de cimbra, que permite conectar de manera diagonal dos montantes verticales adyacentes, aumentando la rigidez y proporcionando una mayor resistencia vertical y lateral de esta estructura auxiliar de carácter temporal.Tanto los travesaños horizontales como las diagonales, son rigidizadores que ajustan, aseguran y estabilizan la torre de cimbra desde su arranque. El número de arriostramientos varía en función de la altura total de la torre, gracias a lo cual se evita el vuelco o desplazamiento de la torre de cimbra ante posibles esfuerzos horizontales, garantizando la estabilidad estructural y la capacidad de carga de la torre de cimbra.
  • Abrazadera/acoplamiento: Se trata de un dispositivo utilizado para conectar dos tubos diferentes. Existen dos tipos principales: acoplamiento de cuña (donde la fuerza de sujeción se obtiene al ajustar una mordaza sobre el tubo mediante el golpeo de una cuña) y el acoplamiento roscado (donde la fuerza de sujeción se obtiene al ajustar una mordaza alrededor del tubo por medio de una tuerca y un perno).
  • Contrapeso. Consiste en material sólido opcional que puede disponer la estructura que conforma la cimbra para proporcionar una mayor estabilidad frente al vuelco por la acción de su peso muerto.
  • Cimiento. Subestructura opcional, en terrenos de poca capacidad portante y de resistencia a compresión, que tiene el objetivo de transmitir la carga de las torres de cimbra a éste en lugar de realizar un apoyo directo sobre el terreno. Como cimentación de las torres de carga suelen disponerse zapatas formadas por durmientes de madera o de hormigón.

 

 

En la Figura 2 siguiente se puede ver un esquema simplificado de los componentes de una cimbra, en este caso, de una cimbra de gran carga MK-360 de la empresa ULMA.

Figura 2. https://www.ulmaconstruction.com/es/encofrados/puntales-cimbras/cimbras-de-gran-carga/cimbra-gran-carga-mk

 

A continuación os dejo una animación del proceso de montaje Cimbra PAL Mecanotubo para aclarar las ideas.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

20 abril, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Encofrado prefabricado para pilares

Los encofrados pueden ser esencialmente de dos tipos, el “tradicional” de madera y los prefabricados, normalmente metálicos y de madera, aunque también se pueden utilizar otros materiales como el plástico o el cartón plastificado. Lo habitual hoy día es el uso de encofrado metálico debido a sus mayores rendimientos. Estos encofrados suelen suministrarse por empresas especializadas, siendo muy importante elegir el sistema comercial que más se adapte a las necesidades o a los procesos de trabajos previstos.

En los encofrados de madera se suelen “matar” las esquinas disponiendo unos listones triangulares llamados “berenjenos” que no solo mejoran la estética, sino que evitan la rotura de las esquinas y la aparición de árido sin recubrimiento o coqueras. Además, cuando tenemos una tipología estructural singular como un pilar con capitel o con una sección especial, los encofrados de madera se adaptan sin ningún problema.

En el caso del uso para pilares o columnas, los encofrados metálicos suelen estar formados por un bastidor metálico con cara encofrante de madera o chapa, orientado a la ejecución en las cuatro caras (cuadrados o rectangulares) o circulares. Estos paneles se encuentran normalizados, con dimensiones habituales entre los 50 y 100 cm, para permitir el manejo por los operarios y pensados para secciones cuadradas y rectangulares con lados múltiplos de 5 cm. Es posible realizar numerosas puestas (2-20, según el sistema) así como recuperar el sistema para sucesivos ciclos. Para reducir los tiempos de montaje, se simplifica el sistema de sujeción mediante cuña y chaveta, realizando la unión por disposición a tope de sus planos. La mayor ventaja de estos encofrados es que su rigidez evita el uso de puntales a modo de tornapuntas, aunque en el caso de superar 4 m de altura, o con el fin de facilitar su aplomado, puede ser conveniente utilizarlos.

Como suele ser habitual en estos posts, os dejo a continuación varios vídeos para que podáis ver cómo se realiza el montaje de este tipo de elementos auxiliares. Espero que os gusten.

El siguiente vídeo trata de la plataforma para el encofrado de pilares, desde donde el trabajador realiza la colocación del hormigón.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

14 abril, 2018
 
|   Etiquetas: ,  ,  ,  |  

La sostenibilidad en el ámbito de la construcción

La Comisión Mundial sobre el Medio Ambiente y el Desarrollo “World Commission on Environment and Development” (WCED) propuso mantener a largo plazo los recursos necesarios para satisfacer las necesidades futuras (Butlin, 1989). Además, se señaló que para conseguir un desarrollo sostenible se debía mantener un equilibrio entre los pilares económicos, ambientales y sociales. Desde entonces, los desafíos para conseguir un desarrollo sostenible se han llevado al campo de la construcción en diferentes líneas de investigación. La construcción constituye uno de los principales sectores emisores de gases de efecto invernadero (Liu et al., 2013). La industria de la construcción, junto con sus industrias auxiliares, pasa por ser uno de los mayores consumidores de recursos naturales, tanto renovables como no renovables, que está alterando negativamente el medio ambiente. Agota 2/5 partes de los áridos y 1/4 de la madera, y consume el 40 % de la energía total y el 16 % de agua al año (Lippiatt, 1999; Chong et al., 2009). El consumo de materiales crece constantemente, con más de 23 mil millones de toneladas de hormigón producido anualmente (Schokker, 2010; WBCSD, 2006). En 2010, de acuerdo con la International Cement Review, la producción mundial de cemento se elevó a alrededor de 3,3 millones de toneladas/año, lo que significa un aumento más del 100% en casi 10 años. La fabricación de cemento Portland genera grandes cantidades de CO2 debido a las altas demandas de energía necesarias para la fabricación y calcinación de la piedra caliza. La producción mundial de cemento llegó a 1,6 mil millones de toneladas/año en 2001, lo que corresponde a aproximadamente el 7 % de la cantidad mundial de dióxido de carbono liberado a la atmósfera (Bremner, 2001). Otros estudios indican que la contribución de la industria cementera a las emisiones de gases de efecto invernadero supera el 5% del total (Worrell et al., 2001). En Australia, para mantener la demanda en la construcción, se necesitan cada año aproximadamente 30 millones de toneladas de productos, más del 56 % de esta cantidad es hormigón, y el 6%, acero (Walker-Morison et al., 2007). En 2001, España tuvo la mayor tasa de consumo de hormigón en Europa, con 1,76 m3 de hormigón per cápita por año (ECO-SERVE, 2004). En 2007, la producción de clinker alcanzó alrededor de 55 millones de toneladas en España. Sin embargo, este número se redujo a 14,1 millones de toneladas en 2013 como consecuencia de la crisis financiera (Oficemen, 2016).

Existen recomendaciones para reducir el impacto ambiental de las estructuras de hormigón (fib, 2012). La citada guía considera el ciclo completo de las fases del ciclo de vida, de la cuna a la tumba. La correcta selección de las materias primas, así como los aditivos y adiciones, constituye una de las claves para reducir el impacto ambiental. Otra forma de reducir los impactos pasa por el uso de procesos más respetuosos con el medio ambiente en la producción y el transporte del hormigón. En esta guía también se habla de optimizar estructuras basándose en indicadores ambientales y de desempeño. Por último, concluye que las estructuras deben optimizarse comparando diferentes alternativas y teniendo en cuenta los indicadores ambientales, especialmente las emisiones de CO2, pues pasa por ser uno de los factores más importantes para evaluar el impacto ambiental. Además, fib (2012) indica cómo la consideración del ciclo de vida completo de una estructura antes de iniciar su construcción puede conseguir reducciones significativas de CO2.

Por tanto, la sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento. Las investigaciones se centran en proporcionar recomendaciones para seleccionar materiales estructurales basados en indicadores económicos, ambientales y de constructibilidad (Zhong & Wu, 2015), utilizando hormigón y acero reciclado (Collins, 2010, Yellishetty et al., 2011), empleando materiales novedosos como cementos con baja huella de carbono y adiciones como substitutos del clínker (García-Segura et al., 2014a; Gartner, 2004), evaluando las emisiones del ciclo de vida de las estructuras de hormigón (Barandica et al., 2013; Tae et al., 2011), reduciendo las emisiones de CO2 de la construcción (2003), optimizando el proceso de producción de cemento (Castañón et al., 2015), estimando la energía consumida en los proyectos de construcción (Wang y Shen, 2013; Wang et al., 2012) e identificando la mejor planificación del mantenimiento (Liu y Frangopol, 2005, Yang et al., 2006), entre otros. En las referencias también hemos dejado alguno de nuestros trabajos en este sentido.

Referencias:

  • Barandica, J.M.; Fernández-Sánchez, G.; Berzosa, Á.; Delgado, J.A.; Acosta, F.J. (2013). Applying life cycle thinking to reduce greenhouse gas emissions from road projects. Journal of Cleaner Production, 57, 79–91.
  • Bremner, T.W. (2001). Environmental aspects of concrete: problems and solutions. In: Proceedings of first all-Russian conference on concrete and reinforced concrete, Moscow, Russia.
  • Butlin, J. (1989). Our common future. By World commission on environment and development. (London, Oxford University Press, 1987, pp.383). Journal of International Development, 1(2), 284–287.
  • Castañón, A.M.; García-Granda, S.; Guerrero, A.; Lorenzo, M.P.; Angulo, S. (2015). Energy and environmental savings via optimisation of the production process at a Spanish cement factory. Journal of Cleaner Production, 98, 47–52.
  • Chong, W.K.; Kumar, S.; Haas, C.T.; Beheiry, S.M.A.; Coplen, L.; Oey, M. (2009). Understanding and interpreting baseline perceptions of sustainability in construction among civil engineers in the United States. Journal of Management in Engineering, 25(3):143–154.
  • Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.
  • ECO-SERVE. (2004). Baseline report on sustainable aggregate and concrete industries in Europe. European Commission, Hellerup.
  • fib. International Federation for Structural Concrete. Task Group 3.8, T. for green concrete structures. (2012). Guidelines for green concrete structures. International Federation for Structural Concrete. Task Group 3.8, Technologies for green concrete structures.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498.
  • Lippiatt, B.C. (1999). Selecting cost effective green building products: BEES approach. Journal of Construction Engineering and Management, 125:448–455.
  • Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.
  • Liu, S.; Tao, R.; Tam, C.M. (2013). Optimizing cost and CO2 emission for construction projects using particle swarm optimization. Habitat International, 37:155–162.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Oficemen. (2012). Annual report of Spanish cement sector 2016. Annual report of Spanish cement sector 2016. Retrieved from https://www.oficemen.com/reportajePag.asp?id_rep=1619
  • Schokker A.J. (2010). The sustainable concrete guide: strategies and examples. 1 ed. U.S.G.C. Council; 2010. Michigan: U.S. Green Concrete Council.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5), 05015020.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2017a). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53.
  • Sierra, L.A.; Yepes, V.; Pellicer, E. (2017b). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review ,67:61-72. .
  • Tae, S.; Baek, C.; Shin, S. (2011). Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete. Environmental Impact Assessment Review, 31(3), 253–260.
  • Walker-Morison, A.; Grant, T.; McAlister, S. (2007). The environmental impact of building materials. Environment design guide. PRO 7.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • World Business Council for Sustainable Development (WBCSD) (2006). Cement Industry Energy and CO2 Performance: Getting the Numbers Right; Geneva: World Business Council for Sustainable Development, (WBCSD).
  • Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26, 303–329.
  • Yang, S.I.; Frangopol, D.M.; Kawakami, Y.; Neves, L. C. (2006). The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs. Reliability Engineering & System Safety, 91(6), 698–705.
  • Yellishetty, M.; Mudd, G.M.; Ranjith, P.G.; Tharumarajah, A. (2011). Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental Science & Policy, 14(6), 650–663.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.
  • Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140, 1037-1048.
  • Zhong, Y.; Wu, P. (2015). Economic sustainability, environmental sustainability and constructability indicators related to concrete- and steel-projects. Journal of Cleaner Production, 108, 748–756.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

23 febrero, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Entrada siguiente Previous Posts

Universidad Politécnica de Valencia