UPV



Resultados de la búsqueda By Etiquetas: hormigon


Compactación del hormigón por centrifugación

1243210240158_hz_myalibaba_web12_9275El sistema de compactación por centrifugación se basa en el aprovechamiento de la fuerza centrífuga a la que son sometidos los propios componentes del hormigón, al aplicarles un movimiento de rotación. Por su fundamento físico el sistema de centrifugación resulta apropiado para fabricar piezas huecas de hormigón con forma cilíndrica (tubos, pilotes huecos, etc.).

Para ello se utilizan moldes giratorios completamente impermeables en cuyo interior es introducido el hormigón. Los moldes giran horizontalmente, bien solidariamente a un eje horizontal, o apoyados sobre un sistema de rodillos, con una velocidad proporcionada a la dimensión del tubo y progresivamente mayor a medida que avanza el proceso.

a) Masa de hormigón introducida en el cilindro, b) arrastre de la masa, c) la masa de hormigón queda adherida a la superficie interior del cilindro

a) Masa de hormigón introducida en el cilindro, b) arrastre de la masa, c) la masa de hormigón queda adherida a la superficie interior del cilindro

Durante el giro (ver figura) sobre cada punto actúan el peso del material P = mg y la fuerza centrífuga Fc = m rω2

En el caso en que  m rω2< mg en la posición M el propio peso del material lo hará caer hacia la parte inferior del molde de manera que sólo se producirá la compresión del hormigón, cuando:

 m rω2> m g

Se tiene así que el cuadrado de la velocidad de rotación debe ser inversamente proporcional al radio de la pieza y que además para que el proceso de compactación sea efectivo su valor ha de ser netamente mayor que el valor mínimo g/r.

Fuerzas que actúan sobre el hormigón

Fuerzas que actúan sobre el hormigón

Como se observa en la figura anterior, la resultante de las fuerzas que actúan sobre el material son variables en función de su posición: máxima en N y mínima en M. Pero en la práctica esto no afecta a la compactación, dada la velocidad de giro que desplaza al material durante el proceso de fabricación a una velocidad lineal de 10 a 25 m/s.

Durante todo el tiempo que gira la pieza, sobre todo en piezas de gran tamaño, la velocidad no se mantiene constante. Al principio mientras se carga el hormigón, la velocidad es reducida (≈ l/10 de Vmáx) y una vez se ha terminado la distribución del material se va acelerando poco a poco hasta llegar a la máxima velocidad. El tiempo que dura el giro de la pieza (entre dos y veinte minutos) debe ajustarse al espesor del tubo, sin exceso para evitar segregación en el hormigón. Con este fin, si los tubos son de gran espesor la compactación se suele hacer por capas sucesivas.

La impermeabilidad del molde debe ser la máxima posible para evitar la fuga del agua de amasado durante la centrifugación. Con la pérdida de agua se pierde también una parte de finos que puede afectar a la estanqueidad y al buen acabado superficial que es característico en las piezas compactadas por este sistema.

Distribución de los áridos por efecto de la fuerza centrífuga

Distribución de los áridos por efecto de la fuerza centrífuga

Los áridos deben ser de la misma composición y de tamaño inferior a 15 mm. La propia fuerza centrífuga al ser proporcional al peso de los áridos, da lugar a su clasificación por capas: los más gruesos son impulsados con más fuerza hacia el exterior y los más finos se sitúan en el interior. El efecto de este reparto es que en el exterior del tubo el hormigón adquiere una mayor resistencia, mientras en el interior la abundancia de finos proporciona una excelente impermeabilidad.

El hormigón debe verterse en el molde antes de que se inicie su fraguado con una consistencia plástica o blanda; no es conveniente que sea más fluido, ya que aparte de bajar la resistencia, la compresión del material durante la centrifugación es menor. Al final del proceso la consistencia es seca.

La impermeabilidad del molde debe ser la máxima posible para evitar la fuga del agua de amasado durante la centrifugación. Con la pérdida de agua se pierde también una parte de finos que puede afectar a la estanqueidad y al buen acabado superficial que es característico en las piezas compactadas por este sistema.

Os dejo algunos vídeos explicativos sobre el tema.

También os dejo un vídeo donde se explica la fabricación de pilotes de sección circular.

  

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

 

15 marzo, 2017
 
|   Etiquetas: ,  ,  ,  |  

Métodos de cálculo del empuje del hormigón fresco

En un post anterior explicamos en unos pequeños apuntes la forma de calcular el empuje del hormigón fresco sobre un encofrado. Ahora os dejo un par de vídeos explicativos para completar la información anterior. En el primer vídeo se explican los factores que influyen en la presión del hormigón fresco y en el segundo los principales métodos de cálculo de dicho empuje. Espero que estos vídeos os sirvan para entender mejor el comportamiento del hormigón fresco cuando empuja sobre un encofrado.

 

 

10 marzo, 2017
 
|   Etiquetas: ,  ,  ,  |  

Transporte de hormigón mediante cinta transportadora

PROBLEMA. Calcula el máximo caudal de hormigón fresco que suministrará una cinta transportadora que tiene 30 m de longitud y tiene que salvar una cota de 6 m. Otros datos:

   –  El coeficiente de fricción entre cinta y rodillos es µ=0,10

   –  La densidad del hormigón fresco durante su transporte es de 2,0 t/m3

   –  El coeficiente de transmisión del motor es η=2/3

   –  La potencia del motor es de 50 C.V.

 

 

Respuesta:

El motor de la cinta transportadora debe de disponer de potencia suficiente para desplazar el hormigón fresco sobre la cinta, superando sus rozamientos y, además, para elevar el hormigón a la cota prevista.

La potencia mecánica se define como la rapidez con que se realiza un trabajo, o lo que es lo mismo, el producto de la fuerza resultante aplicada por la velocidad. La potencia necesaria para vencer el rozamiento de la cinta y rodillos µ, es el producto de la fuerza normal sobre la cinta por el coeficiente de rozamiento. Dicha fuerza se desplaza a la velocidad de la cinta.

Siendo p el peso del hormigón fresco por metro lineal de cinta, la potencia P1 necesaria para desplazar a una velocidad v el peso, teniendo en cuenta el rendimiento del motor η, sería la siguiente:

En la expresión anterior, el producto de la velocidad v por el peso por metro lineal p, se sustituye por el producto del peso específico γ del hormigón fresco por el caudal Q transportado por la cinta.

Por otra parte, la potencia necesaria para vencer el desnivel es el producto del peso del material por la velocidad de ascensión, que es v·senα, quedando la siguiente expresión:

Por tanto, la potencia necesaria total será la suma de P1 y P2. Se puede calcular mediante la siguiente expresión:

De esta expresión se puede despejar el caudal Q:

Expresando todas las unidades en el Sistema Internacional (1 C.V. = 735,498 W; 1 t = 9807 N), la expresión queda como sigue:

 

El motor de la cinta transportadora debe de disponer de potencia suficiente para desplazar el hormigón fresco sobre la cinta, superando sus rozamientos y, además, para elevar el hormigón a la cota prevista.

A continuación os dejo un vídeo donde se explica el transporte del hormigón fresco mediante cinta transportadora. Espero que os sea de interés.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

8 marzo, 2017
 
|   Etiquetas: ,  ,  |  

¿Qué son y para qué sirven los encofrados?

Los encofrados son estructuras auxiliares destinadas a la retención y moldeo del hormigón fresco, capaz de resistir las cargas que actúan sobre él y cumplir las condiciones de funcionalidad, seguridad y economía. El encofrado necesita de elementos auxiliares que permitan soportar, entre otras, las acciones del hormigón fresco: cimbras, puntales, celosías y tensores. Además, para que el encofrado cumpla con su misión, se le deben requerir algunas características como seguridad, estanqueidad y facilidad de montaje, entre otras. El encofrado supone, aproximadamente, un tercio del coste de una estructura de hormigón, siendo muy importante la partida de mano de obra.  El número de usos y si el paramento va a quedar visto son factores que van a influir fuertemente en el coste económico. A continuación os dejo tres vídeos que explican las características básicas de estos elementos auxiliares. Espero que os sean de interés.

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

1 marzo, 2017
 
|   Etiquetas: ,  ,  |  

¿Qué hacer antes de empezar a construir una estructura de hormigón?

La Instrucción de Hormigón Estructural EHE-08 indica claramente la necesidad de planificar y prevenir aspectos relacionados con los procedimientos constructivos, con la seguridad, con los impactos ambientales, con la trazabilidad de los materiales, entre otros. Se trata de evitar imprevistos durante la ejecución de las estructuras de hormigón. Hay que tener presente que el propio procedimiento constructivo (descimbrado, pretensado, etc.) pueden inducir acciones que pueden superar incluso las solicitaciones que tendrá la estructura durante su vida de servicio. Os dejo un objeto de aprendizaje donde explicamos brevemente este tipo de cuestiones. Espero que os sea de interés.

 

28 febrero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  |  

Las juntas de construcción en el hormigón

Pasadores en una junta de construcción de un pavimento rígido

Una junta de construcción es una superficie plana, intercalada entre dos elementos de hormigón, de forma que el segundo se ha colocado contra o sobre el primero una vez que éste último ha endurecido y surge cuando finaliza una zona de estructura que requiere una interrupción de hormigonado por razones constructivas. Estas juntas son prácticamente inevitables, salvo para las estructuras de muy pequeña dimensión. Pueden ser horizontales, como es el caso de los pilares, o verticales, como en las losas, y su situación debe venir indicada en los planos del proyecto. A diferencia de las juntas frías, que se trata de juntas no previstas en la planificación de la obra debido a interrupciones involuntarias, las juntas de construcción se realizan deliberadamente pero con una previa planificación, de acuerdo a la programación de vaciado que se tenga. Cuando se debe interrumpir el hormigonado al finalizar la jornada laboral, la junta de hormigonado se denomina junta de trabajo.

Los aspectos más importantes de las juntas de construcción tienen que ver con su posición, rugosidad, tratamiento de la junta y duración de la interrupción del hormigonado. A pesar de la importancia que tienen en el ritmo de construcción y en la resistencia de la estructura, no siempre se les presta la atención que merecen, especialmente en lo que respecta a su disposición y su técnica de ejecución.

Cuando por cualquier razón es necesario disponer una junta de construcción, ésta se debe situar en un plano normal a la dirección de la armadura y en la zona de esfuerzo cortante mínimo. En las losas o vigas simplemente apoyadas, el mínimo de los esfuerzos cortantes se encuentra en las proximidades del centro de vano. La armadura se dispone normalmente continua a través de las juntas de construcción, debiendo preverse conectadores en caso contrario.

Junta de construcción en centro de vano

Elemento de encofrado para junta de construcción. http://www.maxfrank.com/

Una vez que el hormigón alcanza suficiente resistencia, se retirará el encofrado y se procederá a tratar la junta. El tratamiento puede realizarse mediante cepillado o bien con chorro de agua de caudal y presión suficiente como para eliminar de la superficie la pasta de cemento, bien con chorro de arena húmeda. Estos tratamientos deberán realizarse cuando se espere que los áridos no vayan a desprenderse del hormigón. También es de gran interés utilizar elementos de encofrado especiales, a base de rejillas de acero, que permite el paso de la lechada de cemento, por lo que se forma una superficie rugosa para la segunda tongada. También se podría usar una imprimación con resinas, aunque estas técnicas son de elevado coste y sólo se utilizan en casos especiales. En cambio, está totalmente desaconsejado el “picado” de la junta con medios mecánicos, pues los ensayos realizados demuestran que produce una microfisuración del hormigón que debilita la adherencia de la junta.

Las cualidades de una buena junta son la regularidad y la rugosidad de superficie, evitándose los resaltos y depresiones producidos por los áridos. El mejor tratamiento de limpieza, antes de verter el nuevo hormigón, es la retirada del polvo y la suciedad con aspiradoras, aunque es una técnica que sólo se aplica en presas. No se aconseja la limpieza con chorro de aire comprimido salvo en superficies verticales. Si no es posible utilizar una aspiradora en la limpieza, entonces se debería usar un chorro de agua a baja presión. Por último, es muy importante realizar una vibración enérgica y cuidadosa del hormigón vertido sobre la junta, así como realizar un curado cuidadoso para evitar reducir la resistencia estructural en dicha zona.

Os dejo a continuación algunos vídeos sobre juntas de construcción.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

17 febrero, 2017
 
|   Etiquetas: ,  ,  |  

Cálculo de la presión y la potencia de bombeo del hormigón

https://pixabay.com/es/bomba-hormig%C3%B3n-m%C3%A1quina-construir-1902158/

La pérdida de carga en un circuito de transporte de hormigón (igual a la presión necesaria a la salida de la bomba) depende de una combinación de factores como son las propiedades del hormigón, el desnivel a salvar, la longitud del circuito, el caudal necesario, los diámetros de tubería y el material en que están construidas. Se trata de obtener una solución óptima de forma que un menor diámetro equivale a un menor coste y menos desperdicio de mezcla durante la limpieza, pero hace necesaria una presión de bombeo superior, que puede llegar a ser inaceptable.

El hormigón fresco se comporta esencialmente como un fluido de Bingham, y por tanto, su flujo en tubería sigue la ley de Buckingham. Sin embargo, se acepta normalmente que existe una relación lineal entre la pérdida de carga y el caudal, en vez de la relación cuadrática que establece la ecuación empírica de Darcy-Weisbach. Esta simplificación en el cálculo la asume el ACI (ACI 304.2r-96) y algunos fabricantes de bombas de hormigón (Putzmeister) al utilizar una fórmula empírica que indica que la relación presión-caudal (pq) durante el bombeo es lineal, siendo el coeficiente de la ecuación que las vincula igual a una constante que depende de la geometría del circuito (cuantificada por su longitud L y diámetro D) y de las propiedades de la mezcla, expresadas en función de su asentamiento medido mediante el cono de Abrams a través del parámetro b.

Con las siguientes unidades: q (m3/h), (m), D (m) y b (10·exp(-6)·bar·h/m), entonces p (bar). Además, b se puede obtener de la tabla siguiente en función del cono de Abrams:

Esta fórmula se ha utilizado ampliamente en la generación de ábacos o programas de cálculo de pérdidas de carga. Sin embargo Putzmeister solo tabula el coeficiente b para valores de asentamiento menores de 12 cm, es decir, para hormigones relativamente consistentes, lo que deja fuera de su campo de aplicación a los hormigones fluidos. Si observamos, la pérdida de carga no depende de la presión existente en la tubería, hipótesis que algunos autores han comprobado. Esta aproximación empírica es útil desde el punto de vista práctico, pero no es satisfactoria desde un punto de vista teórico. Si bien proporciona buenos resultados en mezclas tradicionales, no resulta tan adecuada para los nuevos hormigones más fluidos como los autocompactantes o los de alta resistencia (Rodríguez López, 2015).

Para calcular la potencia de la bomba deberemos considerar la presión originada por la pérdida de carga más la presión necesaria para subir el hormigón en altura. Dicha presión total se multiplicará por el caudal y se dividirá por el rendimiento η de la bomba para obtener la potencia N necesaria. La fórmula a emplear sería la siguiente:La presión en la conducción y la potencia de bombeo necesaria para transporta un determinado caudal de hormigón, puede calcularse por medio de ábacos como el de la figura en el que estos parámetros se relacionan con las características de la tubería y del hormigón de la siguiente forma: La escala vertical y horizontal del ábaco representa respectivamente en el caudal (m3/h) y la presión (bar) (en bombeo con altura de elevación, la presión total añadiendo a la presión indicada en el ábaco la presión en altura de la columna de hormigón). Además, en cada cuadrante figura el diámetro de la tubería, la longitud equivalente (longitud real + longitud añadida por pérdidas), la consistencia del hormigón y la potencia necesaria de la bomba. El resultado es aproximado y para un hormigón de buena dosificación. En este tipo de nomogramas se obtiene la potencia necesaria de la bomba, suponiendo un rendimiento de η=0,7. Este rendimiento puede caer a η=0,6 al sobrepasar los 50 bar.

Ejemplo: 40 m3/h de hormigón con un cono de Abrams de 60 mm deben bombearse a través de una tubería de 125 mm de diámetro a una distancia horizontal de 220 m y vertical de 73 m. Con el uso del nomograma de la Figura es fácil deducir la presión del hormigón y el rendimiento.

Fuente: Bombas de hormigón estacionarias, Putzmeister

Para elegir bien el equipo, deberemos considerar algunas cosas:

  1. Hay que elegir el caudal de hormigón a bombear. Se parte del volumen de hormigón que se debe colocar y del tiempo que disponemos. Además, hay que suponer que la bomba tiene tiempos muertos, por lo que es habitual suponer un rendimiento de 45 minutos por cada hora.
  2. Para un caudal determinado, el diámetro de la tubería debe ser un compromiso entre los menores rozamientos, menor velocidad y mayor presión de los diámetros grandes, frente a la facilidad de montaje y de operaciones de bombeo de los diámetros menores.
  3. Hay que calcular las pérdidas en la tubería que se añaden a la longitud real para calcular la longitud equivalente. Los codos de 30º, 60º y 90º equivalen a 1, 2 y 3 m de tubería. Si la manguera es flexible, la longitud hay que multiplicarla por 2. El conducto en vertical hay que multiplicarlo por 1,1.
  4. No hay que olvidarse de sumar la presión necesaria para el bombeo en altura. En el caso de un peso específico del hormigón de 25 kN/m3, supone añadir 1 bar por cada 4 m de altura.

Descargar (PDF, 71KB)

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

9 febrero, 2017
 
|   Etiquetas: ,  ,  ,  |  

Planta de hormigonado tipo torre

http://www.valderrivas.es/

Se denominan centrales hormigoneras tipo torre o plantas verticales a aquellas en que el almacenamiento de los áridos está en la parte más alta de la misma planta y todo el proceso, tanto de dosificación como de amasado y descarga del hormigón, se realiza por gravedad. Los áridos se encuentran almacenados en tolvas elevadas, formando una torre. Los áridos suben a estas tolvas mediante una cinta transportadora o skip de la capacidad de un camión, aunque también son habituales los elevadores de cangilones. Requieren menos espacio que las anteriores y no existe contaminación de los distintos grupos de áridos.

En el centro de la torre y en su punto más alto, un resbaladero giratorio reparte los diversos tamaños de áridos en silos celulares dispuestos en forma estrellada. En el piso inmediato inferior están los elementos dosificadores. La extracción del material de los silos es por gravedad en gravas y arenas, pero para arenas húmedas precisa de ayuda, bien vibratoria, bien de tornillo sin-fin. La dosificación es por peso, con báscula independiente para cada silo, básculas que suelen ser de funcionamiento eléctrico. Las básculas descargan en la tolva receptora, con capacidad para una o varias amasadas, donde se incorpora el cemento procedente de silo y y pesado por báscula independiente. De la tolva receptora pasan correlativamente las diversas dosificaciones a las hormigoneras situadas en el piso inferior. El vaciado de las hormigoneras se efectúa en silo que alimentará el adecuado sistema de transporte. Las plantas actuales suelen contar también con sistemas de calefacción y refrigeración integrados en el proceso de elaboración del hormigón para garantizar las condiciones de temperatura exigibles al hormigón.

Alimentación de áridos con cinta transportadora o con elevadores de cangilones. www.schwing.es

La dosificación del agua es automática, mediante contador de impulsos dotado de electroválvulas diferentes para los primeros y últimos litros de la dosificación, la cual se regula de acuerdo con los datos suministrados por el corrector según la humedad de los áridos. No faltan tampoco los dispositivos para la incorporación de aditivos. El proceso se dirige desde el pupitre de mando, pudiéndose automatizar todo el proceso.

La capacidad normal de estas plantas varía entre 50 y 150 m3/hora, aunque con instalaciones de doble torre se pueden alcanzar los 260 m3/h sin problema. Los gastos de montaje y desmontaje de este tipo de plantas suelen ser elevados, por lo que solo son aplicables en instalaciones estacionarias o de larga duración con gran producción.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

3 febrero, 2017
 
|   Etiquetas: ,  ,  ,  |  

Planta de hormigonado de tipo radial

Planta Liebherr Compactmix 0.5 con almacenamiento estrella

Se denominan plantas de hormigonado de tipo radial debido a la disposición de los acopios de áridos. Los áridos se almacenan sobre el suelo, en compartimentos radiales sobre un muro de áridos en estrella que conforman sectores circulares completando un semicírculo. El paso de los áridos desde el acopio a la báscula de dosificación se realiza a través de las aberturas practicadas en un bastidor metálico donde confluyen los distintos tabiques divisores. El movimiento de los áridos se realiza mediante pala, mediante dragalina situada sobre el escudo de áridos o mediante radio rascante o radio-rascadores que ataca el montón de áridos por un lado.

En el vídeo siguiente podemos ver una planta de hormigonado de tipo radial que utiliza radios rascantes.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

2 febrero, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Corrección de humedad en los áridos en la fabricación del hormigón

La relación agua/cemento incide fuertemente en la resistencia a compresión simple del hormigón. Por tanto, cualquier error en la determinación de la cantidad de agua que interviene en el amasado va a modificar la calidad final del hormigón fabricado. Es importante tener en cuenta que la humedad aportada por los áridos se añade al peso del árido y se debe restar al peso del agua añadida a la mezcla.

Los áridos empleados en la fabricación del hormigón presentan microporos capaces de almacenar agua debido a la capilaridad. Sólo cuando los áridos se secan en horno están sin humedad; sin embargo, aun estando los áridos superficialmente secos, pueden tener sus poros saturados. Esa diferencia en peso entre el estado “saturado superficialmente seco” de los áridos y el estado de “seco al horno” se denomina absorción. La arena varía mucho en su contenido de humedad. Un metro cúbico de arena puede llegar a retener más de 200 kg de agua, lo que quiere decir que su grado higrométrico puede llegar hasta un 20%, de lo que se deduce que si se quiere obtener hormigones homogéneos es muy importante tener en cuenta en las dosificaciones la corrección de humedad. No se tienen en cuenta la humedad de los áridos, por ser ésta pequeña (máx. 3%).

Medición de la humedad de la arena

Para aplicar las dosificaciones de las granulometrías teóricas en el pupitre de control de la central, se necesita conocer allí el grado higrométrico de la arena. Con este objetivo se coloca unas sondas (ver Figura) en las tolvas de la arena y se recoge su lectura en un cuadrante colocado en el pupitre de control.

Figura. Sonda para medir la humedad

El fundamento es el siguiente: La resistencia de la arena al paso de la corriente eléctrica varía según la humedad de la misma. El aparato receptor es un miliamperímetro tarado en % de 1 a 12, que indica el valor de la corriente que pasa atravesando el material a examinar, desde un electrodo colocado en la sonda hasta un cable unido a la masa de la tolva.

El aparato tiene unos dispositivos para tararse, determinando la humedad de la arena por cualquier método de laboratorio.

Higrómetro acoplado directamente a la mezcladora

Existe otro procedimiento para controlar la totalidad de la humedad de los áridos, justo en el momento de la mezcla con el agua y el cemento dentro de la mezcladora. El dispositivo en cuestión no se puede aplicar a la hormigonera y solamente a mezcladoras, por otra parte en la mayoría de las centrales con mezcla, la máquina que se usa para este fin, es una turbo-mezcladora.

El dispositivo mide la totalidad siguiente de agua: “agua añadida + agua de la arena + agua de las gravas” y no realiza corrección de peso de la arena, aunque si mantiene la cantidad de agua requerida.

Se introduce una sonda (electrodo) en la cuba de la mezcladora, que mide la conductividad eléctrica de la mezcla y el aparato hace funcionar una válvula electromagnética que corta el paso del agua en cuanto se alcanza la cantidad de agua requerida. El modo de medición del agua, tal como se ha indicado anteriormente, se puede realizar volumétricamente (contador) o ponderalmente (báscula).

Otra forma habitual de medir la humedad de los áridos es utilizar un medidor tipo Speedy. Se trata de un instrumento portátil y sencillo consistente en un tanque presurizado, una balanza y una maleta de transporte. La cantidad de gas, que está producido cuando el agua y calcio de carburo están mezclados y reaccionan y es directamente proporcional a la cantidad de agua presente en la muestra y los resultados del porcentaje de humedad están tomados de un manómetro de presión.

Medidor de humedad (Tipo Speedy). http://www.utest.com.tr/es/25725/Medidor-de-Humedad-Tipo-Speedy

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

1 febrero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Entrada siguiente Previous Posts

Universidad Politécnica de Valencia