El origen del ingeniero de caminos en España

Agustín de Betancourt (1758-1824)

Siguiendo con la línea iniciada en un artículo anterior, vamos a repasar brevemente algunos datos del origen de la profesión de ingeniero de caminos, canales y puertos hasta finales del siglo XIX. En España, la profesión de Ingeniero de Caminos, Canales y Puertos se asocia desde su origen a Agustín de Betancourt (1758-1824), fundador del Cuerpo de Ingenieros de Caminos y Canales y de la Escuela homónima. Así, con la finalidad de evitar los errores, tanto técnicos como económicos, cometidos en la ejecución de las obras públicas de la época, Carlos IV crea la Inspección General de Caminos, por Real Orden firmada en Aranjuez a 12 de Junio de 1799, con el objeto, tal como se dice en el artículo noveno de la citada orden, de:

 “que para conseguir que se planteen bien los proyectos relativos al trazado y alineación de caminos y canales y las obras de mampostería, puentes y demás relativo a la Comisión, parece indispensable que el ramo de Caminos y Canales se componga de tres Comisarios de la Inspección, ocho facultativos sobresalientes en calidad de Aiudantes, de cuatro facultativos de los caminos de sitios Reales e Imperios, de un facultativo en calidad de celador para cada diez leguas de las comprendidas en las seis carreteras principales del Reino y de un peón caminero en cada legua; cuios empleados, a saber, los de primera, segunda y tercera clase, deberán proponerse por la Junta al señor Superintendente, para su aprobación, en personas facultativas, que tengan calidades que requieren y exigen cada una de estas clases, con especialidad los Comisarios, que deberán ser sujetos instruídos en Matemáticas, exercitados en Geometría práctica y uso de instrumentos, particularmente en las ramas de arquitectura civil e hidráulica, además del mucho ingenio y buenas qualidades que los hagan dignos de optar al empleo de Inspector, y todos los demás empleados se nombrarán por la Junta, en los mismos términos en que se execute en el día”

 Agustín de Betancourt, que sucede en el cargo al primer Inspector General, el Conde de Guzmán, propone la creación de una Escuela Especial, dependiente del Ministerio de Fomento, en la que reciban instrucción los jóvenes que han de dirigir las obras públicas del Estado, ya que según sus palabras

 “… En la Academia de San Fernando de Madrid y en las demás que se intitulan de Bellas Artes, no se enseña mas que el ornato de la Arquitectura…”,

 Betancourt, junto con otras personalidades insignes, fue el propulsor del nacimiento de la Escuela de Ingenieros de Caminos. Este ilustre ingeniero tinerfeño venía propugnando su creación desde 1785 y había definido incluso las cualidades deseables de un Ingeniero de Caminos en la Memoria que presentó al Conde de Floridablanca sobre los medios para facilitar el comercio interior (año 1791).

En noviembre de 1802 comienzan los estudios en la Escuela, sita en Madrid, disponiéndose por Real Orden de 1803 que los alumnos que concluyeran sus estudios en aquélla fueran colocados y denominados Ingenieros de Caminos y Canales. La sede fue el Palacio del Buen Retiro, hasta su destrucción el 2 de mayo de 1808.

Tanto debido al atraso intelectual de la época, como a la urgencia de formar al personal requerido por Betancourt, los estudios duraban únicamente dos años y comprendían: la mecánica, la hidráulica, la geometría descriptiva, los empujes de tierras y bóvedas y el dibujo, en el primer año; y en el segundo, el conocimiento de los materiales de construcción, la construcción de máquinas empleadas en obras, la construcción de puentes, la de las obras para prevenir estragos en los ríos y conducir aguas y, por último, las de caminos y canales de navegación y de río.

Los comienzos de la Escuela fueron, al igual que los acontecimientos de la época, difíciles. Así, el comienzo de la guerra de la Independencia contra los franceses el 2 de mayo de 1808 obligó a suspender las clases y, aunque algunas fuentes citan el año 1814 como la fecha de abolición de la Inspección General y con ella de su Escuela, poco se debió hacer en esos años de contienda. Paralelamente, en 1818 se funda en Inglaterra la Institution of Civil Engineers. En cualquier caso, el restablecimiento de la Constitución en el año 1820 supone la reapertura de la Escuela, y el restablecimiento de la Inspección, hasta el año 1823 en que, al derogarse nuevamente la Constitución, vuelve a ser cerrada. En estas fechas sigue siendo Inspector General, y máximo responsable de la Escuela, Betancourt y los estudios son ampliados a tres años. En 1834, por orden de la Reina Regente, vuelve a abrirse definitivamente (hasta nuestros días) la Escuela, en el edificio de la Aduana Vieja, en la plazuela de La Leña, bajo la dirección del valenciano Juan Subercase. Un año más tarde, en 1835 los Ingenieros de Caminos y Canales asumen las competencias de Puertos.

En un principio se suceden diferentes planes de estudios, al amparo de los Reglamentos que gobiernan el funcionamiento de la Inspección General y su Escuela Especial. A los ya citados de 1802 y 1820 sigue el de 1836, cuando se publica el primer Reglamento del Cuerpo (ampliándose el plan de estudios a 5 años, previa superación de un examen de ingreso) y el de 1849, cuando se crea una Escuela preparatoria de ingenieros civiles y de minas y arquitectos que, mediante la superación de dos años comunes posibilitaba el acceso a un examen de ingreso en la Escuela Especial con un programa de estudios que se extendía durante cuatro años más. Puede considerarse que el alto nivel científico de los estudios en la Escuela, para la época, fomentó la difusión de las Matemáticas en el país, entonces muy abandonadas.

En 1844 una Real Orden sienta las bases de las competencias de los Ingenieros de Caminos, Canales y Puertos. En 1851 se crea el Ministerio de Fomento. En 1852 se funda en Estados Unidos la American Society of Civil Engineers, y un año más tarde se inicia la publicación de la Revista de Obras Públicas.

El Reglamento de 1855  recupera el examen de ingreso y se define un plan de estudios específico de 6 años de duración, separado en su totalidad de los estudios de ingeniería de minas y de arquitectura. En el Reglamento de 1865 se asume por primera vez la posibilidad de que cursen sus estudios en la Escuela alumnos cuya intención no sea la de ingresar en el cuerpo al finalizar su carrera. El curso de 1868 se inicia con un nuevo plan de estudios que reduce a cuatro los años de duración de la carrera, aunque no será publicado hasta 1870. El ingreso podía ser preparado fuera de la Escuela para, una vez superado, cursar la carrera en régimen de internado o en régimen externo. Una vez finalizada la carrera se obtenía el título de Ingeniero de Caminos, Canales y Puertos que permitía acceder al ejercicio libre de la profesión. Los alumnos que habían cursado la carrera en régimen interno tenían la posibilidad de acceder al Cuerpo de Ingenieros de Caminos, previa superación de una oposición.

En 1872 las Escuelas Especiales, y entre ellas la de Caminos hasta entonces en el ámbito del Ministerio de Fomento, pasan a depender de la Dirección General de la Instrucción Pública y son derogados sus Reglamentos. Es ésta una época conflictiva en la que no existen reglamentos vigentes a pesar de las sucesivas propuestas de la Junta de Profesores en 1873 y 1874. En 1876 se aprueban provisionalmente los programas de ingreso en la Escuela, redactados en 1874, y en 1877 se introducen algunas reformas en lo relativo a los exámenes de ingreso, acordándose mantener en vigor el Reglamento de 1870. En los años siguientes aparecen, prácticamente cada año, diferentes decretos que modifican someramente la reglamentación existente hasta que el 11 de septiembre de 1886, y dependiendo otra vez del Ministerio de Fomento, se publica un nuevo Reglamento reorganizando nuevamente la Escuela Preparatoria para Ingenieros y Arquitectos, fijándose en cuatro años los posteriores estudios en la Escuela de Caminos, los cuales son reducidos a tres por el Reglamento de 26 de agosto de 1888.  El 12 de julio de 1892 se publica un decreto suprimiendo la Escuela Preparatoria y ese mismo año termina sus estudios con el número uno de su promoción el ingeniero D. Juan Manuel de Zafra y Esteban, el cual introducirá, pasado el tiempo, el estudio de las estructuras de hormigón en la Escuela. Con ello damos paso al siglo XX, pero eso ya es objeto de otro artículo.

Os dejo una conferencia de Laurent Rus que se desarrolló en la UPM: ¿Qué perfil de Ingeniero de Caminos demanda el mercado actual? Espero que os guste.

Conjetura sobre la existencia de puentes romanos sobre el Turia a su paso por Valencia

valenciahistoriadelaciudadvalenciarepublicana01
© SIAM Ajuntament de Valencia

Quería dejar constancia en esta entrada de la gran labor que el profesor Modest Batlle, de la Escuela de Ingenieros de Caminos de Barcelona, está llevando como coordinador de la revista “Cuadernos de diseño en la obra pública” (ISSN: 2013-2603) . Se trata, probablemente, de una de las pocas revistas  cuyo objetivo es la toma de conciencia de la importancia que tiene el diseño en las obras de ingeniería. Acaban de editar el número 5 de la revista con colaboradores tales como Javier Manterola, José Luís Manzanares, Francisco Bueno, Jorge Bernabeu o Teresa Navas. En dicho número también he tenido la oportunidad de participar con un artículo denominado “Conjetura sobre la existencia de puentes romanos sobre el Turia a su paso por Valencia”. Os lo paso por si os resulta de interés y os animo a leer el resto de la revista.

Referencia:

YEPES, V. (2013). Conjetura sobre la existencia de puentes romanos sobre el Turia a su paso por Valencia. Cuadernos de diseño en la obra pública, 5:14-19.

Puente viejo de Ontinyent (Valencia)

Puente OntinyentEl puente viejo (pont vell) de Ontinyent, sobre el río Clariano, está situado en la entrada del núcleo antiguo de la ciudad de Ontinyent por el denominado Camino de los Carros, que conducía a las poblaciones de Xàtiva y Gandia. Fue construido a iniciativa del Consell de la ciudad para dar solución a la aglomeración de tráfico y viandantes asociado al desarrollo de la industria manufacturera de la lana (Sanz, 2005). El puente actual se construyó sobre otros anteriores, que fueron derruidos por las fuertes avenidas del río Clariano. Se trata de un puente de sillería de dos arcos escarzanos de 11,1 y 13,3 m de luz, separados por una gruesa pila de 4,4 m de espesor. La longitud del puente se encuentra sobre 50 m, con una anchura de tablero de 4,2 m. Presenta tajamares triangulares, escalonados, pero que llegan hasta el pretil, con arrimaderos. Los autores fueron los maestros de obra y picapedreros Pere Ribera y Juan Montañés, que suscribieron un contrato de obras con los Jurados de la Villa en enero de 1500, y se comprometieron a terminan antes del 4 de marzo de 1501, cosa que cumplieron. El puente disponía de una torre de defensa en la entrada, de la que se conservan unos restos datados hacia 1597, que actualmente son los cimientos de una casa particular. Su superficie externa es de sillares de piedra, aunque la barandilla fue construida con los restos de varios portales murales derrumbados a finales del siglo XVIII. El puente ha sido restaurado en los años 80.

By Inmasb21 – Treball propi, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=51945460

Referencias:

SANZ, J.J. (2005). Puente viejo y torre sobre el río Clariano, Ontiyent (Valencia), en Aguilar, I. (dir.): Cien elementos del paisaje valenciano: las obras públicas. Conselleria d’Infraestructures y Transports, Generalitat Valenciana. Valencia.

YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Un análisis histórico, estético y constructivo a las obras de fábrica. Universitat Politècnica de València. Inédito.

 

Evolución histórica de los materiales

Puente de lianas. https://www.pxfuel.com/es/search?q=bamb%C3%BA-+planta&page=68

La ingeniería civil no podría entenderse sin su relación con los materiales de construcción. Históricamente, el desarrollo y la evolución de las sociedades ha estado relacionada con la capacidad de sus miembros para producir y conformar los materiales necesarios para satisfacer sus necesidades. Los materiales de construcción han  servido al hombre para mejorar su calidad de vida o simplemente para subsistir, y junto con la energía han sido utilizados por el hombre para mejorar su condición. Los prehistoriadores han encontrado útil clasificar las primeras civilizaciones a partir de algunos materiales usados: Edad de Piedra, Edad del Cobre, Edad de Bronce, Edad del Hierro. Esta última secuencia parece universal en todas las áreas, ya el uso del hierro requiere una tecnología más compleja que la asociada a la producción de bronce, que a su vez requiere mayor tecnificación que el uso de la piedra.  A lo largo de la historia se han ido empleando distintos materiales en su construcción, evolucionando estos hasta la utilización actualmente de materiales compuestos formados por fibras de materiales muy resistentes. Madera, piedra, hierro, hormigón, ladrillo y aluminio han sido los materiales utilizados con más frecuencia en la construcción de todo tipo de estructuras. Actualmente se prueban nuevos materiales para construir puentes con mayor resistencia específica que el acero. Son los denominados materiales compuestos, formados por fibras unidas con una matriz de resina y que se vienen utilizando desde hace años en diversos tipos de industrias (aeroespacial, aeronáutica, automóvil, etc.).

En la tabla que os dejo a continuación, tomada de Milliarium, tenéis un pequeño cuadro cronológico de los materiales que se han utilizado en el caso de los puentes.

Cronología de los materiales en la construcción de puentes
COMPRESIÓN FLEXIÓN TRACCIÓN
Prehistoria Arcilla
(tapial, adobe, ladrillo)
Madera Cuerdas
Historia clásica Piedra Madera Madera
Grapas metálicas
Siglo XIX Fundición Madera Cadenas de hierro
Primera mitad siglo XX Hormigón en masa
Acero laminado
Hormigón armado
Acero laminado
Cables de acero
Segunda mitad siglo XX Hormigones especiales
Acero laminado
Maderas laminadas
Hormigón pretensado
Acero laminado
Aleaciones ligeras
Cables de acero de alta resistencia, alto límite elástico y baja relajación

Sin embargo, la adopción de un nuevo material no ha supuesto un cambio inmediato y drástico en el diseño y concepción de las estructuras. A modo de ejemplo, cuando se utilizó por primera vez el hierro como material estructural en un puente en 1779, sobre el río Severn en Coalbrookdale (Inglaterra), su diseñador, Abraham Darby adoptó el mismo esquema estructural que los puentes de piedra.

Puente de Coalbrookdale, sobre el río Severn (Inglaterra)

El tema es, como veis, muy extenso como para explicarlo en un solo artículo. Por ello creo que lo mejor es que veamos un Polimedia del profesor David García Sanoguera donde nos explica dicha evolución histórica. Espero que os guste.

Los puentes medievales españoles, ¿con cuál te quedas?

Puente de Cangas del Narcea (Asturias). Fotografía de V. Yepes.
Puente de Cangas del Narcea (Asturias). Fotografía de V. Yepes.

La visión de la Edad Media como una época tenebrosa supone ignorar el sorprendente progreso de la innovación y el saber técnico. Si bien es cierto que la caída del Imperio Romano y la caída de un poder central provocaron una caída drástica en la construcción. El inicio del nuevo milenio vino parejo al desarrollo de las ciudades y de la expansión comercial; se empiezan a construir nuevos puentes, en paralelo con las catedrales góticas. Esta actividad constructiva se reforzó con los caminos de peregrinaje hacia Roma y Santiago de Compostela, donde los monjes constructores tuvieron un papel de primera magnitud. Si se comparan con los puentes romanos, los medievales olvidan reglas estrictas en cuanto a su diseño, con arcos asimétricos, plantas curvas o quebradas, tímpanos aligerados, etc. Los medievales eran puentes pintorescos, atrevidos en ocasiones, pero de menor calidad y solidez que los romanos. La labra de los sillares en los puentes medievales es más tosca y defectuosa que la de los romanos. Los arcos suelen ser macizos, con bóvedas formadas por anillos paralelos unos a otros o bien dos roscas en los extremos con un relleno entre sí.

Sin entrar en más detalles, os propongo un concurso. Si te atreves, incluso puedes dedicar tus vacaciones a hacer un recorrido para fotografiarlos y luego nos lo cuentas. He publicado en Twitter un conjunto de puentes representativos del medievo español. No están todos, ni mucho menos. Puedes incluir los que quieras con la etiqueta #Puentes_medievales . Se trata de retuitear aquellos que más te gusten o incorporar nuevos puentes. Aunque muchos se llaman popularmente “puentes romanos”, gran parte de ellos son medievales. Otros también se denominan “Puentes del Diablo“. Algunos se han rehabilitado o restaurado y han perdido parte del diseño original. Empezamos, pues. No se trata de votar la foto más bonita o al puente de tu pueblo, sino al que creas que estéticamente está más logrado, poniendo en marcha tu sentido ingenieril.

Continue reading “Los puentes medievales españoles, ¿con cuál te quedas?”

El acueducto del Tempul, de Eduardo Torroja

I-ETM-002-02_01
Acueducto de Tempul. Enero 1927. Fuente: http://www.cehopu.cedex.es/

El acueducto del Tempul se construyó para el abastecimiento de agua de Jerez de la Frontera (Cádiz), sobre el río Guadalete. Está formado por 11 tramos de vigas rectas de hormigón armado de 20 m de luz y un tramo central de tipo “Cantilever” de 57 m. Esta obra la diseñó y construyó Eduardo Torroja en 1925 apenas dos años después de terminar la carrera, estando trabajando en la empresa Hidrocivil. La estructura original estaba constituida por 14 tramos de vigas de 30 m de luz biapoyadas en los correspondientes pilares. Dos de estos pilares se apoyaban en el cauce del río, lo que provocaba dudas acerca de su resistencia a la socavación. Por ello Torroja decidió eliminar estas dos pilas, manteniendo el resto de la estructura. Se utilizó esta solución sustituyendo las pilas del cauce por apoyos elásticos con cimentación a 8 m de profundidad debido a la mala calidad del suelo del cauce y a través de unos tirantes continuos que pasan por la cabecera de la pila, se anclan en los extremos de los tramos adyacentes. Así el vano central del acueducto está formado por un tramo central de 17 m apoyando en las ménsulas laterales con 20 m de luz.  Para eliminar estos apoyos sin aumentar excesivamente la luz dispuso unos tirantes con un cordón central de acero dulce que, pasando por encima de las pilas adyacentes a los soportes eliminados, las cuales se elevaron y rediseñaron para los nuevos esfuerzos, se anclaban a uno y otro lado de las mismas, disponiendo, por tanto, de la reacción vertical eliminada.

El principal problema de esta solución era que esa reacción provenía de la componente vertical de la tracción del tirante y, salvo que la pila sobreelevada fuese muy alta, dicha reacción no podía generarse de forma pasiva sino con una gran flecha del tramo volado y, por lo tanto, con una flexión excesiva. Por ello, Torroja empleó cables de alta resistencia y los pretensó mediante un sistema de elevación con gatos hidráulicos insertados entre las propias pilas y las cabezas de las mismas, consiguiendo además introducir una compresión adicional en los tramos de tablero entre los puntos de anclaje.

I-ETM-002-17
Dispositivos de elevación de las cabezas de los pilares. Fuente: http://www.cehopu.cedex.es/
Tempul
Esquema de esfuerzos al elevar los gatos

Según cuenta Torroja, poco después de finalizar el hormigonado del tramo central apoyado en los voladizos atirantados, sobrevino una fuerte riada que comenzó a arrastrar la cimbra. Viendo peligrar la integridad de la estructura, y puesto que el hormigón ya había alcanzado una resistencia que se estimó suficiente, se procedió a accionar los gatos, levantando el cabezal de las pilas unos 25 cm, lo que bastó para elevar el extremo de los tramos colgados unos 5 cm, separando la estructura de las cimbras que fueron finalmente arrastradas por el agua.

El accidente durante la construcción del tercer depósito del Canal de Isabel II

24_089_560x0
Tercer depósito del Canal de Isabel II en Madrid: vista del muro divisorio y de la cubierta del cuarto compartimento, antes del derrumbe. Fuente: http://www.cehopu.cedex.es/hormigon/fichas/img_ficha.php?id_img=3

El hormigón armado tuvo unos inicios complicados en España debido al terrible accidente ocurrido durante la construcción del tercer depósito del Canal de Isabel II  para el abastecimiento de Madrid. Se produjeron 29 víctimas mortales y 60 heridos y que, además de suponer la mayor catástrofe ocurrida en España en las construcciones realizadas con el nuevo material, estuvo a punto de hacer desaparecer a la empresa de José Eugenio Ribera. La adopción de una solución de hormigón armado para las cubiertas por parte del Consejo Superior de Obras Públicas demostraba la aceptación del material por la Administración. Iba a ser, con más de 80.000 m², la principal construcción española de hormigón armado hasta la fecha y la mayor del mundo en su género.

El enorme depósito, con unas dimensiones en planta de 360 x 216 m2, que permite almacenar 461.000 m3 de capacidad lo proyectó el propio Ribera mediante un audaz diseño de pilares muy esbeltos sobre los que apoyaban, a través de una viga un forjado abovedado, todo ello de hormigón armado. El arriesgado planteamiento estructural de Ribera, aunque ya había sido probado en obras similares, como el depósito de aguas de Gijón, levantó suspicacias desde el primer momento. El depósito estaba sometido fundamentalmente a la importante carga permanente del relleno de tierras bajo el que debía quedar enterrado, por lo que las acciones de dos arcos adyacentes se compensaban horizontalmente, haciendo trabajar a los pilares eminentemente a compresión, de ahí la pequeña sección transversal diseñada por Ribera.

Esquema de funcionamiento estructural del depósito del Canal de Isabel II
Esquema de funcionamiento estructural del depósito del Canal de Isabel II

Sin embargo, durante la ejecución del relleno de las tierras se produjo un importante error que modificó las condiciones previstas de trabajo de la estructura, pues en lugar de proceder por capas de pequeño espesor extendidas en toda la superficie de la cubierta, se empezó a rellenar desde un extremo, lo que originó unos esfuerzos no previstos en los pilares.

Condiciones de carga no previstas en los pilares
Condiciones de carga no previstas en los pilares

Finalmente, en 1907 Ribera fue exonerado en el proceso judicial en que se vio envuelto a causa del accidente. En su defensa participaron muy activamente, entre otros, José Echegaray que, además de Ingeniero de Caminos, era muy conocido por su actividad política en la década de los 70 del XIX, y por su premio Nobel de literatura del año 1904.

Podéis consultar en versión online el libro El hundimiento del tercer depósito del Canal de Isabel II en 1905 en la biblioteca digital de la Fundación J. Turriano:  http://juaneloturriano.oaistore.es/opac/ficha.php?informatico=00000243MO&idpag=1556896482&codopac=OPJUA

Historia de la prefabricación del hormigón

Alejandro López Vidal y David Fernández Ordoñez acaban de publicar una reseña de gran interés sobre la construcción con prefabricados de hormigón (http://www.andece.org/IMAGES/BIBLIOTECA/historia_prefabricados_noticreto.pdf). Este artículo se ha publicado en la revista Noticentro, en su número 133 correspondiente a noviembre y diciembre de 2015. Espero que os sea interesante su lectura.

Descargar (PDF, 2.76MB)

Mercado de Algeciras, de Eduardo Torroja

Mercado de abastos de Algeciras, de Eduardo Torroja Miret (1899-1961). Wikipedia

El Mercado de Abastos de Algeciras, es un edificio obra del ingeniero Eduardo Torroja Miret y ejecutado por el arquitecto Manuel Sánchez Arcas en 1935 en la Plaza Nuestra Señora de La Palma (Plaza Baja). Fue una estructura muy avanzada para su época, y su cúpula fue la más grande de la historia durante 30 años (1935-1965), hasta que se construyó el Astrodome en Houston (Texas).

El edificio cubre un espacio octogonal cubierto por una lámina esférica sin apoyos internos de 47,60 m de diámetro, 44,10 m de radio de curvatura, 9 cm de espesor en su zona central y 50 en la zona de unión a los pilares, perforada por una claraboya de 10 m de diámetro. La cúpula descansa toda ella sobre 8 pilares periféricos quedando volada en forma de visera en los tramos intermedios para dejar paso a la luz al interior. Se consigue así una estructura limpia y diáfana. Los pilares se encuentran ceñidos por un cinturón con dieciséis redondos de 30 mm, atrevimiento que luego repetiría Torroja en las viseras del Hipódromo de la Zarzuela de Madrid.

El propio Torroja en su libro “Razón y ser de los tipos estructurales” nos explica el funcionamiento de esta estructura: “Los faldones de la bóveda, entre soporte y soporte, vienen escotados por los lunetos que forman las bóvedas cilíndricas rebajadas del contorno, las cuales, a la par que proporcionan con sus marquesinas a las puertas, rigidizan la cúpula y encauzan los haces de isostáticas hacia los soportes.  Al tesar el anillo octogonal que recoge y equilibra los empujes radiales de la cúpula sobre los soportes, mediante los tensores de rosca de que iban provistas sus barras, el casquete esférico quedó equilibrado; e incluso, forzando ligeramente la tensión de aquél, se notó perfectamente cómo toda la parte central de la cúpula se levantaba despegando de su cimbra, lo que permitió desmontar ésta libremente sin ninguno de los cuidados que normalmente requieren estos descimbramientos“.

Os dejo a continuación un vídeo donde D. Rafael López Palanco, Catedrático de Estructuras de la Universidad de Sevilla, realiza una visita técnica al Mercado de Abastos de Algeciras, enmarcado en las proyecciones Visitas de Obra del proyecto I+D+i: Fuentes para la historia de las obras públicas, cofinanciado por la Agencia de Obra Pública de la Junta de Andalucía (AOPA) de la Consejería de Fomento y Vivienda. Espero que os guste.

 

El oficio de maquinista en la industria de la construcción

Los operadores o maquinistas de las máquinas empleadas en obras públicas constituyen una pieza clave en el funcionamiento de cualquier obra. La complejidad de algunos equipos y la incidencia de la maquinaria en los costes de producción, precisan de especialistas con una formación adecuada, capacidad de trabajar en equipo y con un fuerte sentido común. No en vano, una parte importante de las medidas de seguridad en el trabajo dependen de estos especialistas.

Os dejo un vídeo realizado por Structuralia que nos ofrece un perfil de este tipo de trabajo y algo de historia respecto a sus orígenes. Espero que os guste.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.