UPV



Resultados de la búsqueda By Etiquetas: fernandez-casado


El arco, ese invento diabólico

Puente de Cangas de Onís, sobre el Sella (Asturias). Imagen: V. Yepes

El arco es una estructura que, gracias a su forma, trabaja fundamentalmente a compresión, siendo la estructura resistente por excelencia (Fernández Troyano, 2004). El arco construido por dovelas que se van apoyando unas con otras hasta alcanzar la clave en una cimbra provisional, no es una idea intuitiva. Como indica Fernández Casado (2005), se trata de un invento genial capaz de salvar de manera perdurable un vano mediante elementos de tamaño muy inferior a la luz que pretendían salvar.

De hecho, civilizaciones como la maya o la inca construyeron en fábrica durante siglos sin llegar a utilizar la idea del arco (Huerta, 2004). Tampoco conocieron estos pueblos prehispánicos la maquinaria necesaria para levantar pesos (cabrias, grúas o polipastos) o los martinetes empleados en la hinca de pilotes. A este respecto, resulta de gran interés el fragmento de los “Comentarios Reales” del Inca Garcilaso de la Vega[1] recogido por González Tascón (1992) refiriéndose a la admiración que los indios tuvieron por los conquistadores españoles pues “…los tuvieron por hijos del Sol y se rindieron con tan poca resistencia como hicieron, y después acá también han mostrado y muestran la misma admiración y reconocimiento cada vez que los españoles sacan alguna cosa nueva que ellos no han visto, como ver molinos para moler trigo y arar bueyes, hacer arcos de bóveda de cantería en las puentes que han hecho en los ríos, que les parece que todo aquel gran peso está en el aire; por las cuales cosas y otras que cada día ven, dicen que merecen los españoles que los indios los sirvan”.

La fábrica, como construcción realizada con materiales pétreos, no resiste las tracciones, lo cual es un gran inconveniente para este tipo de material natural empleado por el hombre desde tiempos inmemoriales. Sin embargo, la invención del arco, que permite el trabajo del material a compresión, supuso un avance de primera magnitud en la construcción, una auténtica revolución tecnológica. Parece ser que el arco no es tan antiguo como la fábrica propiamente dicha. La construcción de bóvedas con obra de fábrica para cubrir huecos tuvo su origen cuando alguien empezó desplazando sucesivamente hiladas sucesivas de piedra, cada una en voladizo respecto a la anterior, para acabar cerrando el hueco en una disposición denominada como “falsa bóveda”. Esta construcción se empleó en las civilizaciones antiguas, por ejemplo en la arquitectura maya. Quizá el ejemplo paradigmático sea la falsa bóveda de la Puerta de los Leones de Micenas, ya en el siglo XIII a.C.

Puerta de los Leones de Micenas

Puerta de los Leones de Micenas, s. XIII a.C. (ejemplo de “falso arco”). Imagen: V. Yepes

El paso a la construcción de verdaderos arcos, es decir, aquellos que basan su resistencia en su propia forma y funcionan con esfuerzos internos de compresión en todas sus juntas, no fue un paso evidente o sencillo. Es difícil entender cómo unas simples piedras talladas, adosadas unas contra otras y adecuadamente orientadas, son capaces de soportar su propio peso y el de otras cargas verticales (Arenas, 2002). Tal y como indican Steinman y Watson (2001), “la belleza y la magnificencia del arco son sorprendentes; su descubrimiento fue uno de los más grandes logros del pensamiento humano”. En palabras de Eduardo Torroja (1957) “el arco es el mayor invento tensional del arte clásico. Él sigue impresionando al vulgo, y la Humanidad ha tardado mucho en acostumbrarse a su fenómeno resistente; prueba de ello es la frecuencia con que la leyenda achaca al diablo su construcción”.

Un arco de fábrica no es más que una viga curvada formada por piezas, capaz de sostenerse al transmitir cada dovela su empuje a la siguiente, desde la clave hasta los arranques, y de ellos, a los estribos. Tal y como refiere Durán (2007), para Heyman el arco constituye un conjunto de piedras a hueso, unas encima de otras, formando una estructura estable bajo la simple acción de la gravedad. Es como si las fuerzas internas describieran un viaje a través del propio arco hasta alcanzar un soporte lo suficientemente sólido. Este lugar geométrico de los puntos de paso de la resultante de las presiones es lo que se denomina como línea de presiones.

Génesis del arco por piezas de tamaños cada vez menores

Génesis del arco por piezas. Imagen: V. Yepes

Por tanto, para que este artificio funcione, los apoyos deben tener su movimiento horizontal impedido con los contrarrestos o tirantes adecuados. Como dice un antiguo proverbio árabe citado por Fernández Casado (1933) “el arco nunca duerme” en alusión a su constante estado comprimido y equilibrado. Este aspecto es fundamental en la construcción de puentes de piedra: una deficiencia en la estabilidad de los apoyos o de los estribos puede provocar la ruina de la estructura. Se comprende así que, cuanto más grande sea el arco, mayor tendrá que ser la base del estribo. Nadie mejor que el autor de la inscripción situada en el puente romano de Alcántara para definir el modo de trabajar del arco: “Ars ubi materia vincitur ipsa sua”, que Fernández Casado (2005) traduce como “Arte mediante el cual la materia se vence a sí misma”. No puede expresarse mejor el arte de las estructuras que resisten por forma.

Referencias

ARENAS, J.J. (2002). Caminos en el aire: los puentes. Colección ciencias, humanidades e ingeniería. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

DURÁN, M. (2007). La utilidad de antiguos conocimientos constructivos en las obras de restauración de puentes históricos, en Arenillas, M.; Segura, C.; Bueno, F.; Huerta, S. (eds.): Actas del Quinto Congreso Nacional de Historia de la Construcción. Instituto Juan de Herrera/CEHOPU, Madrid, pp. 261-273.

FERNÁNDEZ CASADO, C. (1933). Teoría del arco. Revista de Obras Públicas, 81(2615): 77-86.

FERNÁNDEZ CASADO, C. (2005). La arquitectura del ingeniero. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos. 2ª edición, Madrid.

FERNÁNDEZ TROYANO, L. (2004). Tierra sobre el Agua. Colegio de Ingenieros de Caminos, Canales y Puertos. 2ª edición, Madrid.

GONZÁLEZ TASCÓN, I. (1992). Ingeniería española en ultramar (siglos XVI-XIX). CEHOPU, Madrid.

HUERTA, S. (2004). Arcos, bóvedas y cúpulas. Geometría y equilibrio en el cálculo tradicional de estructuras de fábrica. Instituto Juan de Herrera, Madrid.

STEINMAN, B.D.; WATSON, S.R. (2001). Puentes y sus constructores. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos, 350 pp. Madrid.

TORROJA, E. [1957] (2007). Razón y ser de los tipos estructurales. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.


[1] Su verdadero nombre fue Gómez Suárez de Figueroa (1539-1616), fue un escritor e historiador hipanoperuano, siendo su obra cumbre los Comentarios Reales de los Incas, cuya primera parte fue publicada en 1609 y la segunda parte en 1616.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

30 Junio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Los orígenes del hormigón armado

http://www.cehopu.cedex.es/hormigon/

Las civilizaciones antiguas ya tuvieron la idea de juntar piedras usando un amalgamador. Así, hacia el 2500 a.C., los egipcios ya emplearon un mortero de cal y yeso en la construcción de las pirámides de Giza. Sin embargo, fueron los romanos los que emplearon el hormigón a gran escala en obras como el Coliseo (en su cimiento y paredes internas) y el Panteón, construidos en los años 80 y 120 d.C. en Roma, o bien en el puente de Alcántara, en Hispania, del 104 al 106 d.C.

Tras la caída del imperio romano, el uso del hormigón decae hasta que, en la segunda mitad del siglo XVIII se vuelve a emplear en Francia y en Inglaterra. Así, en 1758, el ingeniero John Smeaton, ideó un nuevo mortero al reconstruir el faro de Eddyston en la costa de Cornish. En esta obra se empleó un mortero adicionando una puzolana a una caliza con una alta proporción de arcilla. Este mortero se comportaba bien frente a la acción del agua del mar debido a la presencia de arcilla en las cales, permitiendo incluso fraguar bajo el agua permanecer insoluble una vez endurecido.

Aunque Joseph Aspdin patentó en 1824 el cemento Portland, se considera al francés Vicat como padre del cemento al proponer en 1817 un sistema de fabricación que se sigue utilizando actualmente. Con todo, el cemento Portland actual se produce, desde el año 1845, con el sistema de Isaac C. Jhonson. Este procedimento se basa en altas temperaturas capaces de clinkerizar la mezcla de arcilla y caliza.

Las nuevas dársenas en el puerto de Toulon (Francia), en 1748, constituyen la primera obra moderna en la que se emplea el hormigón y que se encuentre documentada. Esta obra se ejecutó mediante tongadas alternas de hormigón fabricado con puzolana y mampostería irregular. En 1845 Lambot empieza a fabricar en Francia objetos en los que combina el hormigón y el acero surgiendo de esta forma el primer hormigón armado.

Patentes de sistemas de hormigón armado (Christophe 1902)

Destaca la publicación, en 1861, del libro “Bétons Aglomérés appliqués à l’art de construire“, donde François Coignet analiza la función del hormigón y del acero como partes integrantes del nuevo material. Joseph Monier construye en 1875 el primer puente de hormigón armado del mundo en Chazalet (Francia) con un vano de 16,5 m de luz patentando el hormigón armado. En 1885, asociados Coignet y Monier, presentan en la Exposición Universal de París ejemplos de elementos que podrían realizarse con hormigón como vigas, bóvedas, tubos, etc.

A finales del siglo XIX se comienza a utilizar el hormigón en países como Alemania y Estados Unidos. Aunque las primeras aplicaciones del hormigón en Estados Unidos datan de 1875, fue a partir de 1890 cuando su empleo alcanzó un impulso extraordinario. Eran unos años donde las bases científicas del comportamiento del hormigón armado no estaban asentadas y, por tanto, las aplicaciones estaban sujetas a patentes y sistemas de firmas comerciales. Así, a pesar de las patentes de Monier sobre el hormigón armado, el desarrollo del nuevo material no despegó hasta que empresarios alemanes como Freytag no compraron los derechos de explotación. Fue en 1885 cuando el ingeniero Gustaf Wayss, que acababa de asociarse a las empresas alemanas que poseían los derechos de Monier, estableció los principios básicos del comportamiento del hormigón armado.

Edmond Coignet y De Tedesco publicaron en 1884 el primer método de dimensionamiento elástico de secciones de hormigón armado sometidas a flexión, mientras que el ingeniero Mathias Koenen, director técnico de la empresa de Wayss y Freytag, publicó en 1886 el primer método empírico de este tipo de secciones. La empresa de Wayss y Freytag construyó entre 1887 y 1899 trescientos veinte puentes distribuidos por toda Alemania y el Imperio austro-húngaro.

Las construcciones de Monier en Alemania supusieron un impulso potente en Francia, donde a partir de 1890, empezó una auténtica revolución en la industria de este país. Jean Bordenave patentó en 1886 un sistema de tuberías de hormigón armado (Sidéro-ciment) que se utilizaría por primera vez en el abastecimiento de agua potable de Venecia. La primera patente realmente significativa en el ámbito del hormigón la realizó F. Hennebique en 1892 en Francia y Bélgica. En 1902 Rabut define las leyes de deformación del hormigón armado y sus reglas de cálculo y empleo. En 1904 De Tedesco publica el primer volumen completo sobre hormigón. La primer tesis sobre hormigón estructural la presentó F. Dischinger en 1928, versando dicho trabajo sobre láminas de hormigón para cubrir grandes espacios.

Anuncio cemento, 1903

En España la técnica del hormigón armado también llegó a finales del siglo XIX, desarrollándose simultáneamente con la industria del cemento portland. Nuestro país se situó desde ese momento en las primeras posiciones en el desarrollo internacional de la construcción con hormigón armado. La fabricación de traviesas de ferrocarril por parte de Nicolau en 1891 y el proyecto y construcción en 1893 del depósito de agua de Puigverd (LLeida) por parte del ingeniero Francesc Maciá, se consideran las primeras aplicaciones de este material. En los primeros años del siblo XX, otros ingenieros y arquitectos (Ribera, Zafra, Rebollo, Durán, Jalvo, Fernandez Casado, Torroja, entre otros) contribuyeron enormemente al desarrollo del hormigón armado en España. Por último, a partir de 1910, se introduce la enseñanza del hormigón armado en la Escuela de Ingenieros de Caminos de Madrid. No obstante, accidentes como el de la construcción del tercer depósito del Canal de Isabel II hizo que estos inicios fueran complicados.

Puente de Ribera (1910) en Valencia de Don Juan (León). http://www.mirame.chduero.es/PHD/Hidro.php?id=196

Referencias:

http://www.cehopu.cedex.es/hormigon/

http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/viewArticle/3261/3674

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

4 Enero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  |  

¿Por qué los romanos fueron grandes ingenieros?

El puente de Alcántara sobre el Río Tajo.

A lo largo de estos meses hemos repasado aspectos históricos y constructivos de la ingeniería de todos los tiempos (Egipto, Mesopotamia, Grecia, por ejemplo), sin embargo aún no hemos dicho nada de Roma. Ello merece no sólo un post, sino varios (el puente de Alcántara debería contar, por méritos propios, con un post de oro). Es más, yo diría que es un atrevimiento por mi parte intentar contar en tan breve espacio  lo más relevante de la ingeniería romana, puesto que, con total seguridad nos dejaremos cosas por el camino. Grandes ingenieros españoles como Fernández Casado abordaron con gran interés estos temas, y hoy día hay verdaderos especialistas en el tema, publicaciones, congresos, páginas web, etc. El propio arquitecto e ingeniero de Julio César, Marco Vitruvio nos ha legado el tratado sobre construcción más antiguo que se conserva De Architectura, en 10 libros (probablemente escrito entre los años 23 y 27 a. C.).  Para resolver cómo abordar el problema de divulgar aspectos de interés sobre la ingeniería romana, lo mejor será hacer varias entregas, dejar cuestiones abiertas, dar enlaces a otras páginas web y recibir todas las sugerencias habidas y por haber de los amables lectores. Vamos allá. (más…)

Universidad Politécnica de Valencia