Nomograma para el cálculo de la piedra de una voladura a cielo abierto según Ash

En un artículo anterior, presentamos el método de Langefors y Kihlström para voladuras en banco de pequeño diámetro. En él se incluía una fórmula para calcular el valor de la piedra, también conocido como valor de mínima resistencia o burden. Sin embargo, existen otros métodos para calcular este valor. En otro artículo también resolvimos este problema, incluyendo cinco métodos y dos nomogramas originales para su cálculo.

Aquí vamos a presentar un nuevo nomograma basado en la metodología de Ash (1963) y la resolución de un problema. Esta metodología es popular debido a su simplicidad, pero solo es apropiada para el diseño de voladuras al aire libre.

Agradezco sinceramente la colaboración de los profesores Pedro Martínez Pagán, Daniel Boulet, y Leif Roschier en la elaboración de este nomograma. A continuación, comparto el nomograma junto con la solución correspondiente del problema. Espero que esta información sea de utilidad e interés para mis lectores.

Descargar (PDF, 309KB)

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Métodos de cálculo de la piedra en una voladura en banco de una cantera

Figura 1. Esquema de la piedra V efectiva, también llamada burden o valor de mínima resistencia

En un artículo anterior, presentamos el método de Langefors y Kihlström para voladuras en banco de pequeño diámetro. En él se incluía una fórmula para calcular el valor de la piedra, también conocido como valor de mínima resistencia o burden. Sin embargo, existen otros métodos para calcular este valor.

El problema que se presenta a continuación incluye cinco métodos y dos nomogramas originales para su cálculo. Al comparar los resultados, es evidente que son bastante similares. No obstante, es posible que la piedra calculada tenga un margen de error que puede corregirse en las siguientes voladuras.

Agradezco sinceramente la colaboración de los profesores Pedro Martínez Pagán y Trevor Blight en la elaboración de los nomogramas. A continuación, comparto estos nomogramas junto con la solución correspondiente del problema. Espero que esta información sea de utilidad e interés para mis lectores.

 

Descargar (PDF, 440KB)

Referencias:

LANGEFORS, U.; KIHLSTRÖM, B. (1963). Técnica moderna de voladuras de rocas. Editorial URMO, Bilbao, 425 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Método de Langefors y Kihlström para voladuras en banco de pequeño calibre

Figura 1. Esquema de una voladura en banco.

Las voladuras en banco de pequeño calibre son aquellas cuyo diámetro de barreno se encuentra entre 65 y 165 mm. Las cargas son cilíndricas alargadas, con una relación de longitud de carga mayor a 100 veces el diámetro. Suelen disponer de un tipo de explosivo en fondo y otro en columna y sus consumos específicos son relativamente bajos, con inclinaciones de barrenos de 1:2 a 1:3. Para este tipo de voladuras, se suele aplicar la técnica sueca de diseño y cálculo de voladuras, o teoría de Langefors y Kihlström (1963).

Según estos autores, la disposición de los barrenos, la cantidad de carga y la secuencia de rotura constituyen los principales problemas que deben determinarse en una voladura. Cuando la altura del banco supera dos veces el valor de la piedra (línea de mínima resistencia, también llamada burden), se usan cargas selectivas. En el fondo del barreno se requiere una cantidad de energía por unidad de longitud superior a unas 2,5 veces la energía necesaria para la rotura de la columna.

Figura 2. Voladura en banco. https://eadic.com/blog/entrada/voladuras-parametros-de-diseno/

La teoría de la escuela sueca se ha desarrollado para tipos de roca más o menos homogéneos, es decir, rocas duras y compactas. Además, trabaja con alturas de banco relativamente altas, típicas de la explotación de canteras, grandes excavaciones de obras públicas y minería a cielo abierto de pequeña escala. La teoría se desarrolló principalmente para rocas duras y diámetros pequeños.

La formulación que calcula la piedra se basa, en una primera aproximación, en que la piedra máxima es igual a 30 veces el diámetro del barreno, afectado por un coeficiente de corrección. Este coeficiente depende de la densidad y potencia relativa en peso del explosivo, de la relación entre el espaciamiento y la piedra, de la inclinación de los barrenos y de un factor de roca. El factor de roca sería la cantidad de explosivos, en kg, necesaria para arrancar un metro cúbico de roca. El factor de roca c = 0,4, se corresponde a un granito; en el caso de una caliza estará algo sobredimensionado, pero del lado de la seguridad. En cualquier caso, la piedra calculada tendrá un error de un 10%, por arriba o por abajo, que puede subsanarse en las siguientes voladuras.

Para aclarar cómo se realiza el diseño aplicando la técnica sueca, os dejo un problema resuelto que, espero, os sea de interés. También os dejo un nomograma original para el cálculo de la piedra teórica de una voladura según la formulación de Langefors y Kihlström (1963), elaborado en colaboración con el profesor Pedro Martínez Pagán.

Descargar (PDF, 268KB)

Referencias:

LANGEFORS, U.; KIHLSTRÖM, B. (1963). Técnica moderna de voladuras de rocas. Editorial URMO, Bilbao, 425 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación con explosivos

La compactación de un suelo mediante explosivos se considera una técnica de mejora del terreno de carácter permanente y que no precisa de adición de materiales. Se trata de colocar cargas explosivas en profundidad que, en suelos granulares poco densos -con menos del 20% de limos o del 5% de arcillas-, provocan su licuación y posterior consolidación. Con ello se consiguen asientos generalizados en su superficie y, por tanto, un aumento de su peso específico. Fue en Rusia, en 1936, donde tuvieron lugar las primeras compactaciones mediante explosivos, incluso bajo el agua. En España se han utilizado en el puerto de Valencia para consolidar rellenos hidráulicos, resolviendo el tratamiento del terreno en solo dos meses (Romana y Ronda, 1997). Como es lógico, este procedimiento no es utilizable en zonas urbanas.

Figura 1. Compactación con explosivos con cargas confinadas. http://62.129.205.139/en/microblasting/

Este procedimiento es más eficiente que la vibrocompactación, por el empleo de mayor energía, pero siempre que se domine la técnica. También es muy aplicable en suelos con grandes bolos, suelos finos o con niveles superiores más rígidos, donde otras técnicas no son útiles. Los resultados son muy buenos, pudiéndose incrementar la densidad relativa de una arena floja en un 15-30%. Son típicos cambios de volumen entre el 3 y el 8%. Se trata de un procedimiento rápido y económico, no siendo necesario el empleo de una maquinaria especial. Suele terminarse el tratamiento con una compactación final de tipo superficial mediante rodillos vibrantes.

Como inconvenientes a este método cabría destacar el efecto de las explosiones sobre estructuras próximas al radio de acción, la falta de uniformidad en el terreno tratado, el factor psicológico negativo asociado al uso de explosivos y el cumplimiento de la normativa relacionada con los explosivos, especialmente en áreas pobladas. A veces se pueden utilizar productos expansivos no explosivos para evitar algunos de estos problemas. Por otra parte, el control de resultados requiere una exploración geotécnica posterior para evaluar el efecto del tratamiento.

En función de la situación donde se aloje la carga del explosivo, las voladuras pueden ser confinadas (la carga se coloca dentro de la capa del suelo, Figura 1), superficiales (en la superficie del terreno, Figura 2) o subacúaticas (pero por encima del nivel del terreno a compactar, Figura 3). Lo más normal es usar voladuras confinadas.

Figura 2. Voladuras superficiales.  http://62.129.205.139/en/microblasting/

 

Figura 3. Voladuras subacuáticas. http://62.129.205.139/en/microblasting/

Se puede definir el radio de influencia del tratamiento como la superficie cuyo asiento es mayor a 1 cm. La fórmula empírica que define dicha zona (López Jimeno et al., 1995) es

Rmin = K · Q1/3

donde Q es la carga del explosivo en kg y K un coeficiente adimensional que depende del tipo de suelo, según la Tabla siguiente:

Tabla 1. Coeficiente K para definir el radio de influencia de la compactación con explosivos (López Jimeno et al., 1995)

De forma aproximada, las cargas se suelen colocar a una profundidad en torno al 75% de la profundidad del estrato a compactar, con una separación entre cargas entre 5 y 15 m. Suelen utilizarse cargas del orden de 10 a 30 g de dinamita (o TNT, o amonita) por m3 de suelo. Para mayor detalle en el cálculo y diseño de la cantidad de explosivo, el radio de acción de la carga efectiva, el espesor de la carga efectiva, el espesor de la capa compactada, la profundidad a la que debe situarse la carga y el radio del dren de arena creado, pueden consultarse textos especializados. Hemos dejado un artículo al respecto al final del artículo.

Os dejo algunos vídeos al respecto. Observad cómo tras la explosión de las cargas, existe una salida importante de agua a presión.

Descargar (PDF, 1.43MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • LÓPEZ JIMENO, C. et al. (1995). Manual de perforación y voladuras de rocas. Instituto Tecnológico Geominero de España.
  • ROMANA, M.; RONDA, J. (1997). Consolidación por voladuras de un relleno hidráulico en el puerto de Valencia. Boletín de la Sociedad Española de Mecánica del Suelo y Cimentaciones, 126.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Voladura en una cantera de áridos

http://mti-minas-valencia.blogspot.com.es/

A continuación os dejo un vídeo de Georock S.L.  donde se explica la voladura en una cantera de áridos en San Fulgencio (Alicante). Una vez visionado, será fácil responder a las siguientes preguntas:

          1. ¿Qué tipo de material se extrae en esta cantera?
          2. ¿Qué altura de banco tiene esta cantera?
          3. ¿Qué dos tipos de explosivo se usan?
          4. ¿Qué separación existe entre los taladros?, ¿qué diámetro tienen?
          5. ¿Qué consumo de explosivo se necesita?
          6. ¿Cuál es la velocidad de detonación en este caso?

En este otro vídeo podéis ver el efecto de los microrretardos:

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Introducción a los explosivos

Símbolo eurocomunitario de explosivo según la Directiva 67/548/EEC

Las voladuras y demoliciones constituyen temas clásicos explicados en la asignatura de Procedimientos de Construcción en el ámbito de la ingeniería civil. A continuación se da una pincelada sobre aspectos básicos de los explosivos.

Los explosivos son sustancias químicas (sólidas o líquidas) que por efecto de un estímulo térmico o mecánico se transforman por reacción química exotérmica en gas. Lo característico de esta transformación es que puede producirse en un tiempo brevísimo (fracciones de milésimas de segundo),  con fuertes aumentos de temperatura (hasta 4.500 ºC), de volumen (»10.000 veces el inicial) y de presión (hasta 200.000 atmósferas), pudiendo provocar la rotura violenta del medio que rodea al explosivo, efecto que es ampliamente aprovechado en minería y obra civil para la voladura de rocas o para la demolición de estructuras.

Conviene aclarar que aunque durante la explosión tenga lugar un importante aumento de temperatura, la energía calorífica liberada no es de gran magnitud. Productos combustibles como el carbón o la gasolina desarrollan, a igualdad de peso durante su combustión, una energía mayor que la que se libera en la detonación  de un producto explosivo. La razón por la que la potencia del explosivo resulta millones de veces superior a la de aquellos, se debe simplemente al brevísimo tiempo en el que se desarrolla esa energía

Esto explica la fuerte influencia que la velocidad de detonación de un explosivo, tiene sobre su potencia o “poder rompedor”. En función de esta velocidad de detonación, el conjunto de productos explosivos puede dividirse en dos grupos:

(1)    Deflagrantes: cuya velocidad de detonación se mide en m/s.

(2)    Detonantes: en los que esta velocidad es del orden de Km/s.

La velocidad de detonación junto con las restantes propiedades que se enumeran más adelante, caracterizan un producto explosivo, pero su comportamiento en la práctica dependerá además de las condiciones del medio en que tenga lugar la explosión, especialmente del grado de confinamiento y de la posible existencia de agua o humedad en el barreno en que se coloque el explosivo.

Os dejo el siguiente vídeo explicativo realizada por un estudiante donde se recoge una introducción a este tema. Espero que os sea útil.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nagolitas o anfos

Figura 1. Sacos de 25 kilogramos conteniendo ANFO. Wikipedia.

Las nagolitas o ANFOS (del inglés: Ammonium Nitrate – Fuel Oil) son explosivos de tipo pulverulento compuestos por nitrato amónico en forma granular, al que se le ha añadido un combustible líquido. Se caracterizan por tener una baja potencia y velocidad de detonación debido a la inexistencia de nitroglicerina en su composición y por presentar, debido a su consistencia pulverulenta, una mala resistencia al agua. Debido a esta insensibilidad, generalmente deben ser iniciados con un explosivo multiplicador. Es necesario cebar fuertemente el barreno con detonador y cartucho de goma en fondo para producir su correcto funcionamiento, además su uso está contraindicado en barrenos con presencia de agua, a no ser que se use encartuchado. Sin embargo, presentan la importante ventaja de poder efectuar su carga de forma mecanizada con bastante seguridad durante su manipulación. 

Debido a su consistencia pulverulenta, su aplicación en barrenos que la contengan está totalmente desaconsejada. Se utiliza bien sea introduciendo en los barrenos el granulado mediante aire comprimido o bien en su otra forma de presentación que es encartuchado. Por ello, se comercializan encartuchados o en sacos a granel de 25 Kg. Su aplicación más frecuente es como carga de columna en la voladura de rocas no demasiado duras y solo a cielo abierto; en labores subterráneas su empleo está desaconsejado debido a la alta toxicidad de sus humos residuales.

Figura 2. Carga del ANFO en el barreno para la voladura de roca. Wikipedia

A partir de la nagolita, se han desarrollado otros explosivos como el alnafo o la naurita que son explosivos adecuados para la voladura de rocas semiduras y para la carga de barrenos con temperaturas elevadas en su interior. El ANFO también se suele mezclar con otros explosivos tales como hidrogeles o emulsiones para formar, en función del porcentaje de ANFO o ANFO Pesado (aproximadamente un 70% emulsión o hidrogel y 30% ANFO).

En la Tabla se resumen las características de los explosivos de este tipo.

Nombre comercial

(UEE)

Potencia relativa

(%)

Densidad encartuchado

(g/cm3)

Velocidad detonación

(m/s)

Energía específica

(Kgm/Kg)

Resistencia

al agua

 

Toxicidad

 

Aplicaciones

Nagolita

65

0’80

2.000

96.400

Mala

Muy alta

Voladuras de rocas Blandas y como carga de columna de los barrenos.

Alnafo

75

0’80

3.000

96.100

Mala

Alta

Voladuras de rocas semiduras y blandas.

Naurita

65

0’80

2.000

94.320

Mala

Alta

Diseñada para barrenos con temperaturas elevadas.

 Tabla.— Características de las nagolitas o anfos

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Explosivos, según National Geographic

A continuación os paso, en varias partes, un documental de National Geographic, sobre los explosivos. Tras visionarlos, podrás contestar a las siguientes cuestiones:

  1. Define brevemente qué es una explosión
  2. ¿Qué elementos son necesarios para toda explosión?
  3. ¿Cuál es el primer explosivo del que se tiene constancia?
  4. ¿De qué está compuesta la pólvora?
  5. ¿Por qué se dice que la pólvora es sucia?
  6. ¿Cuál fue el primer explosivo militar moderno?
  7. ¿Qué se necesita para explosionar el trinitrotolueno?
  8. ¿Qué es el “efecto negativo” de la onda expansiva?
  9. ¿Cuál es el efecto más pernicioso para un edificio si recibe una explosión?
  10. ¿Cómo se puede proteger una estructura del impacto de un explosivo?
  11. ¿Cuántas veces es más potente un explosivo actual que la pólvora?
  12. ¿Qué significa que un explosivo sea estable?
  13. ¿En qué condiciones se da la “química extrema”, propia de una detonación?
  14. ¿Cuándo y dónde se hizo la primera prueba nuclear?, ¿a cuántas toneladas de TNT equivaldría?
  15. ¿Cuántas veces fue más potente la primera bomba H que la bomba de Hiroshima?
  16. ¿Cuál es la mayor bomba explosionada nunca?, ¿quién la explotó y cuándo?, ¿a cuántas bombas de Hiroshima equivalían?

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

 

 

 

 

 

Seguridad en las voladuras

Voladura de una vieja chimenea. Wikipedia.

Las obras subterráneas están aún expuestas hoy día, a pesar de las muchas perfecciones técnicas, a numerosos riesgos. Se debe insistir mucho sobre la observación rigurosa de las disposiciones de seguridad que son prácticamente las mismas en los distintos países, sobre todo teniendo en cuenta que a causa de la escasez de mano de obra, actualmente se encuentran trabajando en obras subterráneas muchos obreros sin calificación y enseñanza profesional que desconocen los peligros latentes. Por ello el primer mandamiento para la dirección de obras es la vigilancia, enseñanza y educación de este personal.

Mencionamos a continuación algunas observaciones a considerar. Existen numerosos manuales y normas legales al respecto. Aquí sólo mencionaremos algunos aspectos que consideramos de interés, aunque no son exhaustivos. Os recomiendo también este post de la revista Seguridad Minera.

Los trabajos de voladura deben ser solamente efectuados por personal especializado y aun ello bajo la vigilancia de la dirección de obras. Aquí también se actúa hoy día a menudo imprudentemente, a veces por ignorancia, a veces por negligencia.

Muy a menudo se almacenan y transportan juntos los explosivos y los detonadores, los obreros llevan cápsulas de fulminantes sueltas en los bolsillos y se pierden detonadores en cualquier sitio.

Al proceder al revestimiento de impermeabilización con material sintético aplicado en dos componentes “in situ” pueden nacer vapores disolventes venenosos y explosivos (estirol) en concentraciones peligrosas.

Cuando se usen hojas de material sintético como impermeabilización se debe prestar atención a la peligrosidad del fuego (ninguna llama abierta, ningún soplete); las vías de escape se deben mantener siempre libres.

Cortesía: Revista Seguridad Minera

Los diferentes trabajos en las obras subterráneas como perforación, voladuras, retirada del material excavado y la maquinaria, producen polvo y gases que impurifican el aire en la obra subterránea y que en determinadas concentraciones pueden ser peligrosos para el personal. De éstos, los principales son el fino polvo cuarcífero. El óxido y el monóxido de carbono, vapores nitrosos y aldehídos así como el dióxido de azufre. En parte, bastan cantidades ínfimas para causar daños en el cuerpo humano que permanezca ocho horas en esta atmósfera impura.

Estos datos recalcan la importancia de una aireación eficaz correctamente calculada.   Entre los sistemas de aireación se distinguen la ventilación por impulsión, por aspiración y la combinación de éstas. Para la ventilación por impulsión se insufla aire fresco hacia el frente de trabajo mientras que el aire viciado es expulsado, a través del túnel, afuera.  El frente de trabajo se ventila eficazmente y deprisa siempre que se conduzca suficiente aire fresco y el extremo del tubo de ventilación sea colocado lo bastante cerca del mismo. El efecto de esta ventilación se ve fuertemente influenciado por la velocidad del aire insuflado a través del tubo, por distancia entre el extremo del tubo y el frente de trabajo, por la sección del túnel y por el emplazamiento del tubo de ventilación en la sección.

La ventilación por impulsión tiene, sin embargo, la desventaja que el aire viciado es empujado a lo largo de toda la galería o túnel y molesta a otros grupos de trabajo. Para la ventilación  por aspiración, el  aire viciado es aspirado en el frente de trabajo y el aire fresco viene desde la boca a través del túnel.

A pesar de que la idea de aspirar los gases tóxicos en el lugar de su nacimiento es correcta, la ventilación por aspiración tiene la grave desventaja que el efecto de la aspiración solamente alcanza a algunos metros más a la del extremo del tubo aun en caso de aspiración continua. Pero precisamente en el frente de trabajo, donde el ensuciamiento del aire es más pronunciado y donde se efectúa el trabajo más duro, queda siempre una zona local con aire muy viciado.

Entre las ventilaciones por impulsión y por aspiración hay una serie de posibilidades de combinación, por ejemplo la ventilación reversible, aspiración con aireación, y otras distintas combinaciones.

Os dejo un pequeño vídeo sobre este tema. Está en inglés, pero podéis activar la opción del subtitulado. Espero que os guste.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

 

Precedentes de los explosivos actuales: el fuego griego

Uso del fuego griego, según un manuscrito bizantino.

Un explosivo es una sustancia o mezcla de sustancias que, mediante un estímulo externo, pueden transformarse repentinamente en un gran volumen de gases y sustancias volátiles a gran temperatura. Pueden considerarse como sistemas químicos en equilibrio inestable, de forma que un impulso de energía inicial debidamente suministrada da lugar a la explosión.

Pero, ¿quién inventó los explosivos? Parece ser que los chinos ya utilizaron desde el siglo I d. de J.C. la pólvora negra o pírica, una primera sustancia con combustión lo suficientemente rápida para constituir una explosión, y que era utilizada probablemente con fines pirotécnicos. Fue a partir del siglo XII cuando los árabes empezaron a usarla como explosivo propulsor de los fusibles, si bien los bizantinos ya la habían utilizado antes en el llamado “fuego griego“.

El “fuego griego”, tambien conocido como “fuego marino”, era el nombre por el que se conocía en la antigüedad a una mezcla muy combustible e incendiaria compuesta, parece ser, de petróleo, azufre, carbón, salitre pez y quizá también fósforo y otros elementos, aunque sus ingredientes son motivo de gran debate. La mezcla fue inventada supuestamente por un refugiado cristiano sirio llamado Calínico, originario de Heliópolis. Algunos autores piensan que Calínico recibió el secreto del fuego griego de los alquimistas de Alejandría. Lanzaba un chorro de fluido ardiente y podía emplearse tanto en tierra como en el mar, aunque preferentemente en el mar. Su nombre proviede del uso que dieron los griegos del Bajo Imperio siguiendo una fórmula procedente de los pueblos orientales.

 

Un dromón bizantino utiliza el fuego griego en plena batalla. / J. A. Peñas

Su composición se consideró un secreto militar, y gracias a su utilización, consiguieron grandes victorias, tanto en tierra como en mar. El poder del arma venía no sólo del hecho de que ardía en contacto con el agua, sino de que incluso ardía debajo de ella. En las batallas navales era por ello un arma de gran eficacia, causando grandes destrozos materiales y personales, y extendiendo, además, el pánico entre el enemigo: al miedo a morir ardiendo se unía, además, el temor supersticioso que esta arma infundía a muchos soldados, ya que creían que una llama que se volvía aún más intensa en el agua tenía que ser producto de la brujería.

Fue creada en el siglo VI, aunque su mayor uso y difusión se daría tras las primeras cruzadas (siglo XIII). Representaba una ventaja tecnológica, y fue responsable de varias importantes victorias militares bizantinas, especialmente la salvación de Bizancio en dos asedios árabes, con lo que aseguró la continuidad del Imperio, constituyendo así un freno a las intenciones expansionistas del Islam, y evitando la posible conquista de la Europa Occidental desde el Este. La impresión que el fuego griego produjo en los cruzados fue de tal magnitud que el nombre pasó a ser utilizado para todo tipo de arma incendiaria,incluidas las usadas por los árabes, chinos y mongoles.  Lo que distinguió a los bizantinos en el uso de mezclas incendiarias fue la utilización de sifones presurizados para lanzar el líquido al enemigo. La mezcla incendiaria se empleó con éxito contra los cruzados en San Juan de Arce (año 1.101) y en Damieta (año 1.281). Más tarde pasó a Europa, pero pronto se abandonó ante la aparición de la pólvora. El fuego griego, que ardía sobre el agua gracias al petróleo, se lanzaba por medio de unos aparatos de proyección, contenido en unos tubos que al romperse sobre el blanco vertían líquido inflamable.

Os paso algunos vídeos y post radiofónicos donde se explica el origen y composición de este producto inflamable. Espero que os gusten.

https://www.youtube.com/watch?v=3POFmZXLZvI

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.