Algunas conclusiones de nuestros trabajos en optimización multiobjetivo de puentes

Hoy hace justo un año que realicé mi defensa pública de la plaza de Catedrático de Universidad en el Área de Ingeniería de la Construcción. Tuve en aquel momento la oportunidad de exponer como parte de la prueba un trabajo de investigación, basado fundamentalmente en los trabajos realizados por nuestro grupo. Se trataba del diseño eficiente de puentes de hormigón postesado de sección en cajón unicelular mediante una optimización multiobjetivo basada en criterios sostenibles. Las conclusiones que aquí se resumen son fruto de varios estudios previos para examinar el uso de cementos con adiciones, la importancia de la carbonatación en la captura de CO2 y en la durabilidad, la reutilización del hormigón, el uso del hormigón autocompactante, los diseños sostenibles de puentes artesa prefabricados de hormigón pretensado, la relación entre el coste y el CO2, así como la energía, los diseños sostenibles de pasarelas de hormigón postesado, los algoritmos heurísticos y las técnicas de toma de decisiones para analizar y reducir el conjunto óptimo de Pareto. Los resultados de estos estudios previos fueron la base del trabajo presentado. Se planteó una optimización multiobjetivo basada en criterios económicos, ambientales, de durabilidad y de seguridad. Además, se formuló una herramienta informática que permitió el uso de software comercial para realizar el análisis del puente con elementos finitos, en un proceso de diseño automático. Al final de la entrada os he dejado referencias directamente relacionadas con la investigación de nuestro grupo en optimización multiobjetivo y toma de decisión multicriterio de puentes a lo largo de su ciclo de vida.

En primer lugar, se estudió el diseño óptimo de puentes de carreteras de hormigón postesado de sección en cajón considerando los costes, las emisiones de CO2 y el coeficiente de seguridad global. Para aplicar la metodología propuesta, se realizó un estudio de caso de un puente continuo de tres vanos situado en una zona costera. Los resultados mostraron que tanto el coste económico como la reducción de las emisiones de CO2 conducen a una reducción en el consumo de material y por lo tanto, son objetivos alineados. Ello indica que la optimización de costes es un buen enfoque para lograr un diseño respetuoso con el medio ambiente. El análisis de la frontera de Pareto indicó las variables más eficientes para mejorar la seguridad con el coste mínimo y las emisiones de CO2. Dado que el coste y las emisiones estaban estrechamente relacionados, el desafío se tradujo en la conversión de las limitaciones estructurales de seguridad y durabilidad en funciones objetivo. Este enfoque permitió encontrar múltiples soluciones alternativas que, con un incremento muy pequeño en el coste, consiguen mayor seguridad y durabilidad. Además, se destacó la eficiencia del aumento de la resistencia y del recubrimiento del hormigón para prolongar la vida útil. La frontera de Pareto se utilizó posteriormente para seleccionar planes de mantenimiento del puente óptimos, basados en su nivel inicial de seguridad y durabilidad. Este planteamiento es consistente con el argumento de que el proceso de deterioro puede causar una reducción en la seguridad estructural. Este estudio permitió analizar las ventajas que presenta un diseño optimizado para prolongar la vida útil de la estructura y mejorar su seguridad. Se llevó a cabo una optimización de la vida útil sostenible a través de un enfoque probabilístico. El plan de mantenimiento óptimo tiene como objetivo minimizar los impactos económicos, ambientales y sociales mientras se satisface el objetivo de fiabilidad durante una vida útil. Finalmente, se compararon los costes del ciclo de vida y las emisiones entre las distintas alternativas.

En paralelo, se desarrolló un metamodelo basado en redes neuronales, para reducir el tiempo de cálculo. Las ANNs se entrenaron para predecir la respuesta estructural en términos de los estados límite en función de las variables de diseño, sin necesidad de un análisis completo del puente. Se propuso una metaheurística mejorada basada en la búsqueda de la armonía multiobjetivo. Se mejoró la diversificación y la intensificación en la búsqueda de soluciones para mejorar la convergencia. Finalmente, se propuso una técnica de toma de decisiones llamada AHP-VIKOR bajo incertidumbre para reducir la frontera de Pareto a un conjunto de soluciones preferidas. Este método permite al decisor introducir fácilmente las preferencias en un criterio específico sujeto a incertidumbre.

Las conclusiones generales de este trabajo de investigación fueron las siguientes:

  • La minimización de costes y emisiones de CO2 conduce a un diseño de puente que favorece la eficiencia estructural minimizando la cantidad de materiales. La inclusión del objetivo de seguridad destaca las mejores variables para mejorar la seguridad y por lo tanto, la robustez de cada variable para el diseño eficiente. El objetivo de durabilidad, evaluado como el inicio de la corrosión, estableció la mejor combinación de resistencia y recubrimiento del hormigón para alcanzar un objetivo de vida de servicio.
  • El canto, el espesor de la losa inferior, las armaduras activas y la armadura pasiva longitudinal son las variables principales que proporcionan la resistencia a flexión. Sin embargo, no se recomienda un incremento de espesor de la losa superior y del ala para mejorar la seguridad estructural, pues conduce a pesos propios adicionales. Para mejorar el comportamiento a flexión transversal, se incrementa el espesor del arranque del ala y se disminuye la longitud del ala. La inclinación del alma puede ser constante, pues tanto la profundidad como la anchura de inclinación del alma aumentan en paralelo para mejorar la seguridad. El espesor del alma no es la variable más económica para aumentar la resistencia a esfuerzo cortante; por el contrario, se incrementa la armadura de refuerzo.
  • El uso de hormigón de alta resistencia puede reducir el canto o la cantidad de armadura. Sin embargo, las restricciones relativas a los estados límite de servicio y las cuantías mínimas de armadura condicionan estas variables. Por lo tanto, el hormigón de alta resistencia no es la mejor solución para mejorar la seguridad. Sin embargo, este resultado cambia cuando se tiene en cuenta el ciclo de vida. Un incremento en la resistencia del hormigón alarga la vida útil de servicio, pues se retrasa el inicio de la corrosión. Por otro lado, el incremento en la resistencia del hormigón presenta mejores resultados a lo largo del ciclo de vida para diseños con inicios de corrosión similares, en comparación con el incremento del recubrimiento de hormigón.
  • Un diseño inicial que incorpore la durabilidad como objetivo y no como restricción resulta especialmente beneficioso si se quiere alargar el ciclo de vida de la estructura. Diseños que retrasen el inicio de la corrosión implican un menor coste del ciclo de vida, incluso con costes iniciales más altos. Sin embargo, un nivel de seguridad inicial más alto no siempre ofrece como resultado un mejor rendimiento del ciclo de vida.

 

A partir de los estudios, se extrajeron estas conclusiones específicas:

  • El empleo de cementos con adiciones conlleva una reducción en la captura de carbono y en la vida útil debido a la carbonatación. A pesar de esto, los cementos con adiciones disminuyen las emisiones anuales. El hormigón autocompactante no es aconsejable desde el punto de vista medioambiental. En términos de coste, se obtienen pocas diferencias entre el hormigón vibrado convencional y el hormigón autocompactante.
  • Es fundamental reutilizar el hormigón como gravas en material de relleno para lograr una completa carbonatación y reducir las emisiones de CO2.
  • En el puente postesado estudiado, la reducción del coste en 1 euro disminuye las emisiones de CO2 en 2,34 kg. En cuanto al coeficiente de seguridad global, se obtienen tres relaciones lineales entre el coste y este objetivo. Para aumentar el coeficiente de seguridad global de 1,0 a 1,4, los costes aumentan en 12,5%. Después de este punto, los resultados de mejora de la seguridad son más caros. Con respecto al inicio de la corrosión, con pequeños incrementos de coste se consiguen retrasos significativos.
  • El estado límite de descompresión es restrictivo y condiciona variables como el canto y el número de torones de pretensado. Dado que estas variables también influyen en la flexión, este estado límite no es restrictivo hasta que el coeficiente de seguridad global alcanza 1,4.
  • La relación entre el coste y el CO2 se mantiene para todos los niveles de seguridad y por lo tanto, la optimización de costes es un buen enfoque para minimizar las emisiones independientemente del nivel de seguridad.
  • En estructuras con un espacio de soluciones factibles pequeños, el coste y la emisión se encuentran muy relacionados. Sin embargo, las estructuras de hormigón armado, que presentan espacios factibles mayores, conducen a diseños medioambientales con mayores secciones, mayor cantidad de hormigón, menor acero y horigones con la menor resistencia característica.
  • El plan de mantenimiento óptimo es aquel que presenta menos operaciones que reparen simultáneamente todas las superficies deterioradas. A pesar de que existe un deterioro diferente para cada una de las caras de la sección expuesta, los resultados recomiendan reparar todas las superficies conjuntamente. Las operaciones de mantenimiento deben programarse al mismo tiempo para reducir el impacto de las interrupciones del tráfico.
  • Por lo general, la optimización del coste de mantenimiento también conduce a la minimización de las emisiones de CO2. Esto se atribuye al hecho de que tanto las emisiones como los costes pretenden reducir el número total de operaciones de mantenimiento. Sin embargo, la optimización de costes intenta retrasar la fecha de la primera reparación. Por lo tanto, la determinación del número de operaciones y el retraso de la primera fecha de mantenimiento, reduce también el coste al mínimo.
  • Las redes neuronales constituyen una buena herramienta para predecir la respuesta de la estructura, proporcionar una buena dirección de búsqueda y reducir el coste computacional. Sin embargo, al final del proceso de búsqueda, se necesitan modelos de análisis completo para converger más cerca de la frontera de Pareto real.
  • La transición de la diversificación a la intensificación, que elimina progresivamente la combinación de soluciones y la selección aleatoria, mejora el rendimiento del algoritmo.
  • El método AHP-VIKOR bajo incertidumbre redujo el conjunto de Pareto a pocas soluciones preferidas. Para este estudio de caso, se prefieren las soluciones con el mayor tiempo de inicio de la corrosión, pues la mejora de la durabilidad no implica grandes diferencias de costes.

 

Referencias:

  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  • GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:1016/j.jclepro.2018.03.022
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:1016/j.jclepro.2017.12.140
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI:10.1016/j.acme.2017.02.006
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Design of open reinforced concrete abutments road bridges with hybrid stochastic hill climbing algorithms. Informes de la Construcción, 67(540), e114. DOI:10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. DOI:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Automated design of prestressed concrete precast road bridges with hybrid memetic algorithms. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 145-154. DOI:10.1016/j.rimni.2013.04.010
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7):1190 – 1205. DOI: 1590/S1679-78252014000700007
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0
  • MARTÍ-VARGAS, J.R.; FERRI, F.J.; YEPES, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2):187-209. DOI:10.12989/cac.2013.12.2.187
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99.
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6): 723-740. DOI: 12989/sem.2013.45.6.723
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48:342-352. DOI:10.1016/j.engstruct.2012.09.014
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI:10.1631/jzus.A1100304
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437.
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88(5-6): 375-386. DOI:10.1016/j.compstruc.2009.11.009
  • YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. DOI:10.1016/j.advengsoft.2007.07.007

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El acero como material estructural

Se define como acero estructural al producto de la aleación de hierro, carbono y pequeñas cantidades de otros elementos tales como silicio, fósforo, azufre y oxígeno, que le aportan características específicas. Tal y como indica el Real Decreto 751/2011 de 27 de mayo, por el que se aprueba la Instrucción de Acero Estructural (EAE), “las estructuras destinadas a obras de ingeniería civil y de edificación construidas en acero, junto con las realizadas en hormigón y las ejecutadas conjuntamente en acero y hormigón, constituyen la inmensa mayoría de las estructuras existentes construidas en el último siglo y de las nuevas que se proyectan actualmente en nuestro país“.

El acero se obtiene a través de un proceso industrial complejo. Existen, por tanto, en el mercado una gran variedad de aceros disponibles para su empleo en las estructuras, definidos por su forma y calidad, y su transformación por las técnicas habituales de corte y unión. Por ello es importante que el ingeniero estructural tenga en cuenta cómo se fabrica el material, los requisitos para su uso en proyecto y sus aplicaciones. Además de las propiedades mecánicas, tales como el esfuerzo de fluencia y la resistencia a la tensión, es importante considerar la ductilidad y la resistencia a la fractura, así como la composición química, la metalurgia y la soldabilidad. Con carácter general, las clases de acero utilizables en estructuras para perfiles y chapas, son aceros laminados en calientes, aceros con características especiales y aceros conformados en frío.

A continuación os dejo un vídeo educativo de la profesora Arianna Paola Guardiola, de la Universitat Politècnica de València, donde se explica en 9 minutos las clases y tipos de acero estructural, las secciones de acero laminado y su uso y se indican aplicaciones prácticas. Espero que os sea de interés.

 

 

 

 

Optimización del diseño sostenible de puentes bajo incertidumbre

Nos acaban de publicar en la revista de Elsevier del primer decil, Journal of Cleaner Production, un artículo donde se propone una nueva metodología en la toma de decisiones del diseño óptimo de un puente bajo criterios de sostenibilidad y bajo incertidumbre. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 16 de octubre de 2018 en el siguiente enlace:

https://authors.elsevier.com/c/1XdSi3QCo9R4pK

Abstract:

Today, bridge design seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. This multi-criteria decision-making problem is subject to variability of the opinions of stakeholders regarding the importance of criteria for sustainability. As a result, this paper proposes a method for designing and selecting optimally sustainable bridges under the uncertainty of criteria comparison. A Pareto set of solutions is obtained using a metamodel-assisted multi-objective optimization. A new decision-making technique introduces the uncertainty of the decision-maker’s preference through triangular distributions and thereby ranks the sustainable bridge designs. The method is illustrated by a case study of a three-span post-tensioned concrete box-girder bridge designed according to the embodied energy, overall safety and corrosion initiation time. In this particular case, 211 efficient solutions are reduced to two preferred solutions which have a probability of being selected of 81.6% and 18.4%. In addition, a sensitivity analysis validates the influence of the uncertainty regarding the decisionmaking. The approach proposed allows actors involved in the bridge design and decision-making to determine the best sustainable design by finding the probability of a given design being chosen.

Keywords:

  • Sustainable criteria
  • Uncertainty
  • Decision-making
  • Multi-objective optimization
  • Energy efficiency

 

Reference:

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177

 

 

¿Qué es el Análisis del Ciclo de Vida?

Nuestro grupo de investigación está en estos momentos muy centrado en aspectos relacionados con el análisis del ciclo de vida y con la sostenibilidad de las infraestructuras. Proyectos como BRIDLIFE y DIMALIFE inciden especialmente es estos temas. He considerado, por tanto, de gran interés para el lector, resumir brevemente el concepto, los tipos, algo de historia y proporcionar unas pequeñas referencias al respecto. Espero que os sean de interés.

El Análisis del Ciclo de Vida clásico constituye una metodología objetiva que trata de evaluar las cargas ambientales asociadas a un producto, proceso o actividad, identificando y cuantificando el uso de materia y energía además de las emisiones al entorno (Olivera et al., 2016).

Sus orígenes se remontan a finales de los años 60. Dos investigadores del Instituto de Investigación del Medio Oeste (MRI), Robert Hunt y William Franklin empezaron a trabajar en una técnica que permitiese cuantificar la energía demandada y los recursos, así como las emisiones de gases de efecto invernadero (GEI) por parte de las industrias (Trusty y Deru, 2005). Esta técnica paso a llamarse como Análisis de Perfil Ambiental y de Recursos (REPA) y se utilizó por primera vez en 1969 por el MRI junto a la compañía Coca-Cola para analizar y seleccionar los materiales más ecológicos y como tratarlos en su final de vida (Gerilla et al., 2007).

La primera expansión del uso de esta tecnología tuvo lugar durante la crisis energética de los años 70, para estudiar el consumo energético de productos de embalaje de plástico o cartón. A finales de los 80’s y principios de los 90’s tuvo de nuevo un gran alcance como herramienta de marketing (Owens, 1996).

Con los avances metodológicos de la herramienta y la proliferación de resultados muy dispares en los diferentes estudios realizados, se decidió llevar a cabo una armonización del ACV. Con dicha finalidad aparecieron diversas directrices, destacando la holandesa y la nórdica, que también incluían recomendaciones contradictorias.

A inicios de los 90’s, la Sociedad de Toxicología Ambiental y Química (SETAC) alcanzó a un consenso mediante grupos consultivos de América del Norte y Europa y elaboraron el “Código de práctica para la evaluación del ciclo de vida”. Paralelamente, surgieron otras iniciativas como la Guía LCA Z-760 de la Asociación de Estandarización Canadiense.

Finalmente, a finales de los años 90, surgieron los procesos de estandarización más reconocidos por parte de la Organización Internacional de Normalización (ISO) (Russell et al., 2005).

La ISO emitió los estándares internacionales más relevantes en 1997, definiendo el ACV como “un método para resumir y evaluar la carga ambiental de un producto (o servicio) en todo el ciclo de vida, y el impacto o influencia potencial sobre el medio ambiente” en la serie de normas ISO 14040 (AENOR, 2006). Esta metodología es compatible con la evaluación de los impactos socioeconómicos, puesto que comparten ciertos elementos que aportan datos comparativos muy útiles para la toma de decisiones frente a nuevos proyectos o acciones de mejora.

De este modo quedan las tres dimensiones del análisis del ciclo de vida:

  • Análisis del Ciclo de Vida Ambiental (ACV-A): Metodología ya presentada que contempla la carga ambiental producida por un producto o servicio durante todo el ciclo de vida.
  • Coste del Ciclo de Vida (CCV): Este análisis se centra en la etapa de diseño de un producto, analizando los costes directos y los beneficios de las actividades económicas, como los costes para la prevención de la contaminación, los costes de las materias primas, los impuestos y los intereses sobre el capital entre otros, en resumen, es una recopilación y evaluación de todos los costes relacionados con un producto a lo largo de todo su ciclo de vida.
  • Análisis del Ciclo de Vida Social (ACV-S): Se trata de una herramienta de evaluación de impactos sociales cuyo objetivo es analizar los aspectos sociales y socio-económicos de los productos y sus impactos potenciales (positivos y negativos) durante todo el ciclo de vida.

 

Como combinación de las tres tipologías, se plantea el Análisis del Ciclo de Vida de la Sostenibilidad (ACV-SOS) realizando un análisis integrado de cualquier producto o servicio.

La Comisión Europea planteó una guía de ruta a esta situación, por medio del proyecto CALCAS (Coordination for innovation in Life Cycle for Sustainability) desde el 2006, con el fin de organizar las distintas modalidades que han surgido mediante una futura norma ISO ACV, que englobara un análisis multicriterio sobre sostenibilidad (van der Giesen et al., 2013).

Aunque la metodología de las tres dimensiones del ACV está basada en la norma ISO 14040, esta no tiene dentro de su alcance el estudio del impacto económico y social, por lo que es necesario combinarla con otras herramientas para profundizar ese análisis. Os dejo a continuación una serie de referencias bibliográficas por si os interesa profundizar más en el tema.

Referencias

  • AENOR (2006). ISO 14040:2006. Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia. Madrid.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GERILLA, G. P.; TEKNOMO, K.; HOKAO, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment, 42(7), 2778–2784.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 (link).
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196:698-713. https://doi.org/10.1016/j.jclepro.2018.06.110
  • OLIVERA, A.; CRISTOBAL, S.; SAIZAR, C. (2016). Análisis de ciclo de vida ambiental, económico y social. INNOTEC, 7, 20–27.
  • OWENS, J. W. (1996). LCA Methodology LCA Impact Assessment Categories Technical Feasibility and Accuracy. International Journal of Life Cycle Assessment, 1(3), 151–158.
  • PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420.  https://doi.org/10.1016/j.jclepro.2018.04.268
  • RUSSELL, A.; EKVALL, T.; BAUMANN, H. (2005). Life cycle assessment – Introduction and overview. Journal of Cleaner Production, 13(13–14), 1207–1210.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure.Journal of Construction Engineering and Management, 142(5):  05015020. DOI: 10.1061/(ASCE)CO.1943-7862.0001099.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI: 10.1016/j.jclepro.2018.03.022.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 
  • TRUSTY, W.; DERU, M. (2005). The U.S. LCI database project and its role in Life Cycle Assessment. Building Design and Construction, 1, 26–29.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La optimización multiobjetivo y la toma de decisiones multicriterio en ingeniería estructural

By retocada por Yeza de la versión original de Alonsoquijano [Public domain], from Wikimedia Commons

Actualmente existe una tendencia clara hacia la evaluación de los impactos en todas las etapas del ciclo de vida de un producto. Esta tendencia ha llegado a los proyectos de estructuras, donde la evaluación de las repercusiones sociales, ambientales y económicas de las distintas alternativas no deriva en una decisión clara y unívoca de la mejor solución, sobre todo cuando los objetivos que se pretenden se encuentran enfrentados entre sí (Jato-Espino et al., 2014; Penadés-Plà et al., 2016; Zamarrón-Mieza et al., 2017; Sierra et al., 2018). El problema de seleccionar la mejor opción en el ámbito del proyecto de puentes ha supuesto una línea de investigación que se ha desarrollado enormemente en las últimas décadas. Balali et al. (2014) expusieron que los problemas relacionados con la toma de decisiones a lo largo del ciclo de vida de un puente se pueden enmarcar dentro de las siguientes fases: (a) proyecto, (b) construcción, y (c) uso y mantenimiento. Estas fases son las que se consideran habitualmente por otros autores (Malekly et al, 2010), que además añaden una última fase en el ciclo de vida de un puente: (d) reciclado o demolición.

Así pues, el proyecto de puentes se caracteriza por la presencia de múltiples objetivos de diseño -muchos contradictorios entre sí-, y la selección de la mejor opción entre distintas alternativas. La calidad, la constructibilidad, la seguridad, el impacto ambiental y el coste son los aspectos que normalmente se consideran en el diseño y la planificación de las operaciones de mantenimiento de un puente. La optimización multiobjetivo (Multi-Objective Optimization, MOO) resulta una herramienta útil cuando varios objetivos desean optimizarse simultáneamente. MOO proporciona un conjunto de soluciones eficaces, constituyendo la denominada frontera de Pareto. Las soluciones que forman parte de la frontera de Pareto no pueden mejorarse sin que empeore cualquier otra solución de dicho conjunto. Koumousis y Arsenis (1998) utilizaron MOO para el diseño de estructuras de hormigón. Liao et al (2011) revisaron los estudios que utilizaron metaheurísticas para problemas relacionados con el ciclo de vida de un proyecto de construcción. Por su parte, Zavala et al. (2013) estudiaron las metaheurísticas utilizadas en la optimización multiobjetivo de las estructuras.

Se pueden reseñar varios estudios que han utilizado la optimización multiobjetivo para comparar el diseño de estructuras de hormigón armado (Reinforced Concrete, RC) atendiendo a la reducción de las emisiones de gases de efecto invernadero y la reducción de costes (Martínez-Martín et al., 2012; García-Segura et al., 2014, 2016; Yepes et al, 2015). Payá et al. (2008) optimizaron pórticos de edificación de RC utilizando como función objetivo la constructibilidad, los costes económicos, el impacto ambiental y la seguridad general de la estructura. Martínez-Martín et al. (2012) optimizaron las pilas RC de un puente considerando como funciones objetivo el coste económico, la congestión de las armaduras pasivas y las emisiones de CO2. Yepes et al. (2015) incorporaron como función objetivo la vida útil en el diseño de una viga de sección en I confeccionada con hormigón de alta resistencia. García-Segura et al. (2014) incluyeron, además, un factor que evalúa la seguridad global en esa misma estructura.

A pesar de que los diseños deben garantizar cierta durabilidad, esta función objetivo suele utilizarse más en el ámbito de la gestión del mantenimiento de infraestructuras ya existentes. Así, Liu y Frangopol (2005) emplearon la optimización multiobjetivo en puentes deteriorados atendiendo a su estado, a los niveles de seguridad y al coste de mantenimiento de la estructura a lo largo del ciclo de vida. Sabatino et al. (2015) optimizaron las operaciones de mantenimiento de la estructura a lo largo de su ciclo de vida bajo los objetivos simultáneos de reducción del coste de mantenimiento y la utilidad mínima anual asociada con un indicador relacionado con la sostenibilidad. Torres-Machi et al. (2015) optimizaron la gestión sostenible de un pavimento considerando simultáneamente aspectos económicos, técnicos y ambientales.

Otro aspecto de interés en el ámbito de la investigación son los procedimientos que permiten seleccionar una solución de un conjunto de opciones posibles atendiendo a múltiples criterios. Las técnicas de toma de decisiones proporcionan un procedimiento racional a las decisiones basadas en cierta información, experiencia y juicio. Estas técnicas pueden clasificarse de acuerdo con la forma en la que el decisor articula sus preferencias. En un proceso “a priori”, los expertos asignan los pesos de cada criterio en la etapa inicial. El proceso “a posteriori” no requiere una definición previa de las preferencias. Por ejemplo, la optimización multiobjetivo genera una gama de soluciones óptimas, que se consideran igualmente buenas –frontera de Pareto-. En este caso, la toma de decisiones tiene lugar “a posteriori”. Este enfoque permite el análisis de las mejores soluciones según cada objetivo, lo cual proporciona información sobre la relación entre los objetivos y las soluciones. Jato-Espino et al. (2014) presentaron una revisión del desarrollo de los métodos de decisión multicriterio aplicados a la construcción. Existen numerosas técnicas de toma de decisiones multicriterio. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), VIKOR (Multi-criteria Optimization and Compromise Solution), MAUT (Multi-Attribute Utility Theory), AHP (Analytical Hierarchy Process), ANP (Analytical Network Process), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations), DEA (Data Envelopment Analysis), COPRAS (Complex Proportional Assessment) o QFD (Quality Function Deployment), son, entre otras, las más extensamente utilizadas.

Abu Dabous y Alkass (2010) presentaron una estructura jerárquica para la toma de decisiones en la gestión de puentes basados en MAUT y AHP. Sabatino et al. (2015) recurrieron a la teoría de utilidad de múltiples atributos para evaluar diversos aspectos de la sostenibilidad estructural considerando los riesgos asociados a los fallos en el puente y las actitudes frente al riesgo de los decisores. Ardeshir et al. (2014) emplearon un AHP difuso para seleccionar la ubicación para la construcción de un puente. Aghdaie et al. (2012) emplearon AHP y COPRAS para calcular la importancia relativa de los criterios y clasificar las alternativas en la selección de ubicaciones para construir nuevas pasarelas. Balali et al. (2014) seleccionaron el material, el procedimiento constructivo y la tipología estructural de un puente mediante la técnica PROMETHEE. Tanto VIKOR (Opricovic, 1998) como TOPSIS (Hwang y Yoon, 1981) son métodos que seleccionan soluciones basadas en la distancia más corta a la solución ideal. Opricovic y Tzeng (2004) compararon VIKTOR y TOPSIS y mostraron que presentan algunas diferencias en relación con la función de agregación y los efectos de normalización. La técnica difusa (fuzzy) (Zadeh, 1965) es una técnica útil para representar la incertidumbre inherente en la vida real. Joshi et al. (2004) evaluaron un conjunto de criterios para seleccionar la cimentacion más adecuada mediante fuzzy. AHP se combina con fuzzy (Jakiel y Fabianowski, 2015, Wang et al., 2001) para seleccionar entre distintas tipologías de puentes RC y alternativas de plataforma offshore, respectivamente. Abu Dabous y Alkass (2010) indicaron la dificultad en establecer la importancia relativa entre dos elementos con planteamientos deterministas, debido a la incertidumbre inherente al comportamiento de los diferentes elementos.

Se han propuesto muchos métodos para reducir el conjunto de soluciones procedentes de la frontera de Pareto (Hancock y Mattson, 2013). El método de la región de “rodilla” (Rachmawati y Srinivasan, 2009) constituye un método “a posteriori” que distingue los puntos para los cuales una mejora en un objetivo da lugar a un empeoramiento significativo de al menos otro objetivo. Una región de “rodilla” en el frente óptimo de Pareto, visualmente es una protuberancia convexa en la parte delantera, la cual es importante para la toma de decisiones en contextos prácticos, pues a menudo constituye el óptimo en equilibrio. Los métodos de agrupación se centran en ensamblar soluciones en grupos y seleccionar soluciones representativas (Saha y Bandyopadhyay, 2009). Los métodos de filtrado eliminan las soluciones de Pareto que ofrecen poca información al decisor (Mattson et al., 2004). Yepes et al. (2015a) propusieron un procedimiento sistemático “a posteriori” para filtrar la frontera de Pareto, a la vez que proporcionaba conocimiento relevante derivado del proceso de resolución. Esta técnica simplifica la elección de la solución preferente. Para ello se combinan matrices AHP aleatorias con la minimización de la distancia para seleccionar la solución más cercana a la ideal.

Se puede consultar una revisión bibliográfica reciente sobre la aplicación de las herramientas de decisión multicriterio al ciclo de vida de los puentes en el trabajo de Penadés-Plà et al. (2016). En este trabajo se comprueba cómo no existe una métrica universalmente aceptada para medir la diversidad de objetivos de todo tipo que se utilizan en la selección de la mejor opción de proyecto de un puente para un caso determinado. Para ello se analizaron un total de 77 artículos publicados desde 1991. El estudio aplicó un análisis multivariante de correspondencias (ver Figura). De este modo, se recogen los métodos de decisión multicriterio que debe aplicar el ingeniero para la selección de alternativas según la fase del ciclo de vida del puente, así como los criterios que se han considerado en dichos trabajos. La relación más obvia se ha identificado entre la lógica difusa y la fase de uso y mantenimiento. También se observa que el método AHP es ampliamente usado en las tres primeras fases del ciclo de vida de un puente. Finalmente la fase de demolición o reciclado es la menos estudiada, asociándose principalmente al método ANP.

Figura. Análisis de correspondencias entre la toma de decisiones y el ciclo de vida (Penadés-Plà et al., 2016)

Referencias:

Abu Dabous, S.; Alkass, S. (2010). A multi‐attribute ranking method for bridge management. Engineering, Construction and Architectural Management, 17(3), 282–291.

Aghdaie, M.H.; Zolfani, S.H.; Zavadskas, E.K. (2012). Prioritizing constructing projects of municipalities based on AHP and COPRAS-G: A case study about footbridges in Iran. The Baltic Journal of Road and Bridge Engineering, 7(2), 145–153.

Ardeshir, A.; Mohseni, N.; Behzadian, K.; Errington, M. (2014). Selection of a bridge construction site using Fuzzy Analytical Hierarchy Process in Geographic Information System. Arabian Journal for Science and Engineering, 39(6), 4405–4420.

Balali, V.; Mottaghi, A.; Shoghli, O.; Golabchi, M. (2014). Selection of appropriate material, construction technique, and structural system of bridges by use of multicriteria decision-making method. Transportation Research Record: Journal of the Transportation Research Board, 2431, 79–87.

García-Segura, T.; Yepes, V.; Alcalá, J. (2014). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.

García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336.

Hancock, B.J.; Mattson, C. A. (2013). The smart normal constraint method for directly generating a smart Pareto set. Structural and Multidisciplinary Optimization, 48(4), 763–775.

Hwang, C.L.; Yoon, K. (1981). Multiple Attributes Decision Making Methods and Applications. Springer, Berlin Heidelberg.

Jakiel, P.; Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054–4061.

Jato-Espino, D.; Castillo-López, E.; Rodríguez-Hernández, J.; Canteras-Jordana, J.C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction, 45, 151–162.

Joshi, P.K.; Sharma, P.C.; Upadhyay, S.; Sharma, S. (2004). Multi objective fuzzy decision making approach for selection of type of caisson for bridge foundation. Indian Journal Pure Application Mathematics.

Koumousis, V.K., Arsenis, S.J. (1998). Genetic Algorithms in Optimal Detailed Design of Reinforced Concrete Members. Computer-Aided Civil and Infrastructure Engineering, 13(1), 43–52.

Liao, T.W.; Egbelu, P.J.; Sarker, B.R.; Leu, S.S. (2011). Metaheuristics for project and construction management – A state-of-the-art review. Automation in Construction, 20(5), 491–505.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Malekly, H.; Meysam Mousavi, S.; Hashemi, H. (2010). A fuzzy integrated methodology for evaluating conceptual bridge design, Expert Systems with Applications, 37, 4910-4920.

Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432.

Mattson, C.A.; Mullur, A.A.; Messac, A. (2004). Smart Pareto filter: obtaining a minimal representation of multiobjective design space. Engineering Optimization, 36(6), 721–740.

Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade.

Opricovic, S.; Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.

Rachmawati, L.; Srinivasan, D. (2009). Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Transactions on Evolutionary Computation, 13(4), 810–824.

Sabatino, S.; Frangopol, D.M.; Dong, Y. (2015). Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude. Engineering Structures, 102, 310–321.

Saha, S.; Bandyopadhyay, S. (2009). A new multiobjective clustering technique based on the concepts of stability and symmetry. Knowledge and Information Systems, 23(1), 1–27.

Sierra, L.A.; Yepes, V.; Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.

Torres-Machi, C.; Chamorro, A.; Pellicer, E.; Yepes, V.; Videla, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record: Journal of the Transportation Research Board, 2523, 56–63.

Wang, H.L.; Zhang, Z.; Qin, S.F.; Huang, C.L. (2001). Fuzzy optimum model of semi-structural decision for lectotype. China Ocean Engineering, 15(4), 453–466.

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.

Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.

Zavala, G.R.; Nebro, A.J.; Luna, F.; Coello Coello, C. A. (2013). A survey of multi-objective metaheuristics applied to structural optimization. Structural and Multidisciplinary Optimization, 49(4), 537–558.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Revisión de los procedimientos de optimización heurística de las estructuras

Figura 1. Diseño tradicional de estructuras por prueba y error (Yepes, 2017)

El diseño de las estructuras se ha basado fundamentalmente en la experiencia del ingeniero proyectista. La topografía y las condiciones de tráfico, entre otros, determinan el diseño de un puente. A partir de ahí, las dimensiones de la sección transversal, el tipo de hormigón y la disposición general de las armaduras se definen atendiendo a la experiencia profesional y a las recomendaciones y criterios de diseño (Figura 1). A continuación, se ajustan el resto de variables, tras comprobar el cumplimiento de los estados límite último y de servicio. Si el proyectista quiere mejorar el diseño propuesto, normalmente se realiza un proceso de prueba y error, de forma que tras varios tanteos, se intenta reducir el consumo de materiales, y por tanto, el coste de la estructura. Frente a este planteamiento, los métodos heurísticos emplean técnicas basadas en la inteligencia artificial para seleccionar un diseño, analizar la estructura, controlar las restricciones y rediseñar la estructura modificando las variables hasta conseguir optimizar la función objetivo.

Cohn y Dinovitzer (1994) revisaron la investigación realizada en su momento en relación con la optimización de las estructuras y señalaron la brecha existente entre los estudios teóricos y la aplicación en problemas estructurales reales. Sarma y Adeli (1998) analizaron años más tarde los estudios relacionados con la optimización matemática de las estructuras, complementada más recientemente por Hare et al. (2013) que estudiaron la aplicación de los algoritmos heurísticos en la optimización estructural. Los algoritmos heurísticos difieren en cuanto a planteamiento y aplicabilidad de los métodos matemáticos exactos. De hecho, la optimización heurística resulta muy efectiva pues, aunque no garantiza la obtención del óptimo global del problema, proporciona soluciones casi óptimas en tiempos de cálculo razonables. Esta ventaja cobra importancia en la optimización de estructuras reales, donde el número de variables crece extraordinariamente de forma que desborda el tiempo de cálculo de los métodos exactos de optimización. Además, la programación matemática requiere el cálculo de gradientes de las restricciones, mientras que la optimización heurística incorpora las restricciones de diseño de una manera directa (Lagaros et al., 2006).

Las técnicas metaheurísticas utilizan estrategias de búsqueda para localizar óptimos locales en grandes espacios de soluciones de forma efectiva. Un ejemplo de ello son los Algoritmos Genéticos (Genetic Algorithms, GAs), que son procedimientos de búsqueda poblacionales inspirados en la evolución natural (Holland, 1975). Así, los GAs generan soluciones de alta calidad a través del cruce genético con otros individuos de una población y la mutación de algunas de sus características a lo largo de generaciones. Los padres suelen seleccionarse atendiendo a su aptitud (Coello, 1994) y los hijos mantienen ciertas características de sus padres. En cada generación sobreviven los hijos con mayores aptitudes. Además, para evitar la convergencia prematura del algoritmo, se utiliza un operador de mutación, al igual que ocurre en la Naturaleza, que cambia aleatoriamente de vez en cuando alguna de las características de las nuevas soluciones. Una variante a esta técnica son los Algoritmos Meméticos (Moscato, 1989), donde cada individuo de la nueva generación se mejora mediante una búsqueda local con el objetivo de mejorar los genes para que los padres obtengan mejores resultados en las siguientes generaciones. Esta técnica, por tanto, aplica los GAs a poblaciones de óptimos locales.

La inteligencia de enjambre (swarm intelligence) es una metaheurística poblacional empleada en los problemas de optimizacón. Estos algoritmos imitan el comportamiento colectivo de los sistemas descentralizados y auto-organizados, tales como algunas colonias de insectos, basándose en la interacción entre los vecinos, pero que siguen un patrón global. Los algoritmos de enjambre difieren en filosofía de los algoritmos genéticos porque utilizan la cooperación en lugar de la competencia (Dutta et al., 2011). Entre los algoritmos pertenecientes a este grupo, basados en el comportamiento biológico, destaca la optimización de colonias de hormigas (Ant Colony Optimization, ACO), la optimización de enjambre de partículas (Particle Swarm Optimization, PSO), las colonias de abejas artificiales (Artificial Bee Colony, ABC), la optimización en enjambres de luciérnagas (Glowworm Swarm Optimization, GSO), entre otros. ACO basa su estrategia en el comportamiento de las hormigas, que dejan un rastro de feromonas para encontrar alimento de forma efectiva (Colorni et al., 1991); PSO simula un sistema social simplificado (Kennedy y Eberhart, 1995); ABC imita el comportamiento alimentario forrajero de las abejas (Karaboga y Basturk, 2008); GSO imita un movimiento de las luciérnagas hacia los vecinos más brillantes (Krishnanand y Ghose, 2009).

Las metaheurísticas poblacionales presentan una amplia capacidad de búsqueda en paralelo y una fuerte robustez. Sin embargo, para mejorar la intensificación de la búsqueda, estos algoritmos suelen combinarse con otras heurísticas de búsqueda local. Esta hibridación consigue explotar la diversificación en la búsqueda poblacional con la intensificación de la búsqueda local. Luo y Zhang (2011) comprobaron que el algoritmo híbrido presenta una convergencia más rápida, una mayor precisión y es más efectivo en la optimización de problemas ingenieriles. Blum et al. (2011) estudiaron las ventajas de la hibridación de las metaheurísticas en el caso de la optimización combinatoria.

El recocido simulado (Simulated Annealing, SA), propuesto por Kirkpatrick et al. (1983), constituye uno de los algoritmos utilizados en la optimización estructural. Este algoritmo se basa en el fenómeno físico del proceso de recocido de los metales. La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. SA presenta la ventaja de admitir soluciones de peor calidad al principio de la búsqueda, lo cual permite eludir óptimos locales de baja calidad. La aceptación por umbrales (Threshold Accepting, TA), propuesto por Dueck y Scheuer (1990), tolera también opciones de peor calidad para eludir los óptimos locales. La diferencia entre SA y TA es que el criterio de aceptación de una solución peor es probabilista en el primer caso y determinista en el segundo. Los algoritmos genéticos se han hibridado con el recocido simulado en el diseño óptimo de puentes prefabricados de hormigón pretensado (Martí et al., 2013; Martí et al., 2016) y vigas en I de hormigón armado (RC) (Yepes et al., 2015a). Otras estrategias de hibridación también han demostrado su eficiencia con PSO (Shieh et al., 2011, Valdez et al., 2011, Wang et al., 2013) y ACO (Behnamian et al, 2009, Chen et al., 2012).

Qu et al. (2011) señalaron la lentitud en la convergencia de los algoritmos GSO; del mismo modo Zhang et al. (2010) apuntaron ciertas deficiencias de estos algoritmos en la búsqueda del óptimo global. Es por ello que se ha hibridado SA con GSO (García-Segura et al., 2014c, Yepes et al., 2015b) para combinar la diversificación de la búsqueda de GSO con la intensificación de la búsqueda de SA para encontrar de forma efectiva un óptimo de elevada calidad. García-Segura et al. (2014c) mostraron cómo un algoritmo híbrido de optimización de enjambre de luciérnagas (SAGSO) obtuvo resultados considerablemente mejores en cuanto a calidad y tiempo de cálculo. SAGSO superó al GSO en términos de eficiencia, precisión y convergencia. Sin embargo, se requiere una buena calibración para garantizar soluciones de alta calidad con un tiempo de cómputo corto.

La búsqueda de la armonía (Harmony Search, HS) constituye una heurística propuesta por Geem et al. (2001) inspirada en el jazz, donde se trata de armonizar u construir sucesiones de acordes razonables. Las notas, los instrumentos y la mejor armonía representan los valores, las variables y el óptimo global. Alberdi y Khandelwal (2015) compararon ACO, GA, HS, PSO, SA y TS en la optimización del diseño de marcos de acero, comprobando que los mejores resultados se obtenían con HS. La búsqueda de la armonía se ha utilizado para optimizar columnas rectangulares de hormigón armado (de Medeiros y Kripka, 2014), forjados compuestos (Kaveh y Shakouri Mahmud Abadi, 2010) y pórticos planos de hormigón armado (Akin y Saka, 2015). Alia y Mandava (2011) recogieron en su trabajo las variantes utilizadas para hibridar con HS. García-Segura et al. (2015) emplearon un algoritmo de búsqueda de la armonía hibridada con la aceptación por umbrales para encontrar diseños óptimos sostenibles de puentes peatonales de hormigón postesado.

La optimización de los puentes atrajo la atención de los ingenieros a partir de la década de los años 70, incluyendo los puentes viga de acero, (Wills, 1973), el refuerzo de los puentes losa (Barr et al., 1989), los puentes viga de hormigón pretensado (Aguilar et al., 1973, Lounis y Cohn, 1993), y los puentes en cajón postesados construidos “in situ” (Bond, 1975; Yu et al., 1986). Desde la aparición de la inteligencia artificial, se ha puesto mayor énfasis en el uso de técnicas de optimización heurística para optimizar las estructuras. Srinivas y Ramanjaneyulu (2007) usaron redes neuronales artificiales y algoritmos genéticos para optimizar el coste de un puente de vigas en T. Rana et al. (2013) propusieron una optimización evolutiva para minimizar el coste de una estructura de puente continuo de hormigón pretensado de dos tramos. Martí et al. (2013) implementaron un algoritmo de recocido simulado híbrido para encontrar las soluciones más económicas de puentes prefabricados de hormigón pretensado de vigas artes. El uso de refuerzos de fibra de acero en ese tipo de puente se estudió posteriormente con algoritmos meméticos (Martí et al., 2015). Se propusieron algoritmos genéticos para optimizar las cubiertas poliméricas reforzadas con fibras híbridas y los puentes atirantados (Cai y Aref, 2015).

También se han optimizado otro tipo de estructuras con algoritmos heurísticos, como los forjados prefabricados (de Albuquerque et al., 2012), columnas de hormigón armado (Park et al., 2013; Nigdeli et al., 2015), columnas de acero (Kripka y Chamberlain Pravia, 2013), marcos espaciales de acero (Degertekin et al., 2008), marcos de hormigón armado (Camp y Huq, 2013), pórticos de hormigón armado (Payá-Zaforteza et al., 2010), vigas en I de hormigón armado (García-Segura et al., 2014c; Yepes et al., 2015a), pórticos de carreteras (Perea et al., 2008), pilas altas de viaductos (Martínez et al., 2011; 2013), muros de contención (Gandomi et al., 2015; Pei y Xia, 2012; Yepes et al., 2008, 2012; Molina-Moreno et al., 2017a), zapatas de hormigón armado (Camp y Assadollahi, 2013; Camp y Huq, 2013), bóvedas de pasos inferiores en carreteras (Carbonell et al., 2011) y estribos de puentes (Luz et al., 2015).

Referencias:

  • Aguilar, R.J.; Movassaghi, K.; Brewer, J.A.; Porter, J.C. (1973). Computerized optimization of bridge structures. Computers & Structures, 3(3), 429–442.
  • Akin, A.; Saka, M.P. (2015). Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions. Computers & Structures, 147, 79–95.
  • Alberdi, R.; Khandelwal, K. (2015). Comparison of robustness of metaheuristic algorithms for steel frame optimization. Engineering Structures, 102, 40–60.
  • Alia, O.M.; Mandava, R. (2011). The variants of the harmony search algorithm: an overview. Artificial Intelligence Review, 36(1), 49–68.
  • Barr, A.S.; Sarin, S.C.; Bishara, A.G. (1989). Procedure for structural optimization. ACI Structural Journal, 86(5), 524–531.
  • Behnamian, J.; Zandieh, M.; Fatemi Ghomi, S.M.T. (2009). Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with Applications, 36(6), 9637–9644.
  • Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135–4151.
  • Bond, D. (1975). An examination of the automated design of prestressed concrete bridge decks by computer. Proceedings of the Institution of Civil Engineers, 59(4), 669–697.
  • Cai, H.; Aref, A.J. (2015). A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges. Structural and Multidisciplinary Optimization, 52(3), 583–594.
  • Camp, C.V.; Assadollahi, A. (2013). CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Structural and Multidisciplinary Optimization, 48(2), 411–426.
  • Camp, C.V.; Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363–372.
  • Carbonell, A.; González-Vidosa, F.; Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159.
  • Chen, S.M.; Sarosh, A.; Dong, Y.F. (2012). Simulated annealing based artificial bee colony algorithm for global numerical optimization. Applied Mathematics and Computation, 219(8), 3575–3589.
  • Coello, C. (1994). Uso de Algoritmos Genéticos para el Diseño Óptimo de Armaduras. In Congreso Nacional de Informática “Herramientas Estratégicas para los Mercados Globales”, pp. 290–305. Fundación Arturo Rosenblueth, México, D.F.
  • Cohn, M.Z.; Dinovitzer, A.S. (1994). Application of Structural Optimization. Journal of Structural Engineering, 120(2), 617–650.
  • Colorni, A.; Dorigo, M.; Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceeding of ECALEuropean Conference on Artificial Life, pp. 134–142. Paris: Elsevier.
  • de Albuquerque, A.T.; El Debs, M.K.; Melo, A.M.C. (2012). A cost optimization-based design of precast concrete floors using genetic algorithms. Automation in Construction, 22, 348–356.
  • de Medeiros, G.F. Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59, 185–194.
  • Degertekin, S.O.; Saka, M.P.; Hayalioglu, M.S. (2008). Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm. Engineering Structures, 30(1), 197–205.
  • Dueck, G.; Scheuer, T. (1990). Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161–175.
  • Dutta, R.; Ganguli, R.; Mani, V. (2011). Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Materials and Structures, 20(10), 105018.
  • Gandomi, A.H.; Kashani, A.R.; Roke, D.A.; Mousavi, M. (2015). Optimization of retaining wall design using recent swarm intelligence techniques. Engineering Structures, 103, 72–84.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014b). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014c). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Geem, Z.W.; Kim, J.H.; Loganathan, G.V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.
  • Hare, W.; Nutini, J.; Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19–28.
  • Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA.
  • Karaboga, D.; Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.
  • Kaveh, A.; Shakouri Mahmud Abadi, A. (2010). Cost optimization of a composite floor system using an improved harmony search algorithm. Journal of Constructional Steel Research, 66(5), 664–669.
  • Kennedy, J.; Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 – International Conference on Neural Networks, Vol. 4, pp. 1942–1948. IEEE.
  • Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.
  • Kripka, M.; Chamberlain Pravia, Z.M. (2013). Cold-formed steel channel columns optimization with simulated annealing method. Structural Engineering and Mechanics, 48(3), 383–394.
  • Krishnanand, K.N.; Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93–119.
  • Lagaros, N.D.; Fragiadakis, M.; Papadrakakis; M.; Tsompanakis, Y. (2006). Structural optimization: A tool for evaluating seismic design procedures. Engineering Structures, 28(12), 1623–1633.
  • Lounis, Z.; Cohn, M.Z. (1993). Optimization of precast prestressed concrete bridge girder systems. PCI Journal, 38(4), 60–78.
  • Luo, Q.F.; Zhang, J.L. (2011). Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Constrained Engineering Problem. Advanced Materials Research, 204-210, 823–827.
  • Luz, A.; Yepes, V.; González-Vidosa, F.; Martí, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352.
  • Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114.
  • Martínez-Martín, F. J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6), 723–740.
  • Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432.
  • Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017a). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134, 205-216.
  • Molina-Moreno, F.; Martí, J.V.; Yepes, V. (2017b). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884.
  • Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program (report 826). Caltech, Pasadena, California, USA.
  • Nigdeli, S.M.; Bekdas, G.; Kim, S.; Geem, Z. W. (2015). A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Structural Engineering and Mechanics, 54(6), 1097–1109.
  • Park, H.; Kwon, B.; Shin, Y.; Kim, Y.; Hong, T.; Choi, S. (2013). Cost and CO2 emission optimization of steel reinforced concrete columns in high-rise buildings. Energies, 6(11), 5609–5624.
  • Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610.
  • Payá-Zaforteza, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693–704.
  • Payá-Zaforteza, I.; Yepes, V.; Hospitaler, A.; González-Vidosa, F. (2009). CO2-optimization of reinforced concrete frames by simulated annealing. Engineering Structures, 31(7), 1501–1508.
  • Pei, Y.; Xia, Y. (2012). Design of Reinforced Cantilever Retaining Walls using Heuristic Optimization Algorithms. Procedia Earth and Planetary Science, 5, 32–36.
  • Qu, L.; He, D.; Wu, J. (2011). Hybrid Coevolutionary Glowworm Swarm Optimization Algorithm with Simplex Search Method for System of Nonlinear Equations. Journal of Information & Computational Science, 8(13), 2693– 2701.
  • Rana, S.; Islam, N.; Ahsan, R.; Ghani, S.N. (2013). Application of evolutionary operation to the minimum cost design of continuous prestressed concrete bridge structure. Engineering Structures, 46, 38–48.
  • Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.
  • Shieh, H.L.; Kuo, C.C.; Chiang, C.M. (2011). Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Applied Mathematics and Computation, 218(8), 4365–4383.
  • Srinivas, V.; Ramanjaneyulu, K. (2007). An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks. Advances in Engineering Software, 38(7), 475–487.
  • Valdez, F.; Melin, P.; Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing, 11(2), 2625–2632.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • Wills, J. (1973). A mathematical optimization procedure and its application to the design of bridge structures. Wokingham, Berkshire, United Kingdom.
  • Yepes, V.; Alcalá, J.; Perea, C.; González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821–830.
  • Yepes, V.; Díaz, J.; González-Vidosa, F.; Alcalá, J. (2009). Caracterización estadística de tableros pretensados para carreteras. Revista de la Construcción, 8(2), 95-109.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yu, C.H.; Gupta, N.C. Das; Paul, H. (1986). Optimization of prestressed concrete bridge girders. Engineering Optimization, 10(1), 13–24.
  • Zhang, J.; Zhou, G.; Zhou, Y. (2010). A New Artificial Glowworm Swarm Optimization Algorithm Based on Chaos Method. In B. Cao, G. Wang, S. Chen, & S. Guo (Eds.), Quantitative Logic and Soft Computing 2010, Vol. 82, pp. 683–693. Berlin, Heidelberg: Springer Berlin Heidelberg.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Necrológica: Ha fallecido el Prof. David Billington

Prof. David Billington

Hoy es un día triste. Me he enterado a través de Ignacio Payá del fallecimiento del Prof. David Billington (Universidad de Princeton), el autor the “The Tower and The Bridge. The New Art of Structural Engineering” y tantos y tantos estudios sobre grandes ingenieros como Isler, Ammann o Maillart.


Os dejo a continuación una conferencia impartida sobre arte estructural. Espero que os guste.

Más de 10 años investigando la optimización de estructuras de hormigón

Parece que fue ayer, pero este 2018 cumplimos 10 años desde que nos publicaron el primer artículo internacional relacionado con la optimización heurística de estructuras de hormigón. Sin embargo, todo empezó un poco antes, en el 2002, año en que defendí mi tesis doctoral denominada “Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW”. Con ella pude ponerme al día con los procedimientos de optimización heurística más prometedores en ese momento. Sin embargo, pronto me dí cuenta de las posibilidades que tenía aplicar estos algoritmos a la optimización de problemas reales de ingeniería, en particular las estructuras de hormigón.

Por tanto, en septiembre del año 2002 fue el inicio del Grupo de Investigación de Procedimientos de Construcción, Optimización y Análisis de Estructuras. La iniciativa de creación del grupo correspondió a los profesores González-Vidosa y Yepes Piqueras. El primero de ellos, con una amplia experiencia en la investigación y la práctica profesional de las estructuras de hormigón armado y pretensado; y el segundo, con una experiencia reciente en el campo de la optimización heurística en la ingeniería. A partir de ese momento empezaron a gestarse las primeras tesis doctorales, las primeras de las cuales se defendieron en el año 2007, correspondientes a Cristian Perea de Dios y a Ignacio Javier Payá Zaforteza. En el año 2008 se publicaron nuestros tres primeros artículos: Perea et al. (2008), Payá et al. (2008) y Yepes et al. (2008).

En aquellos momentos, las preguntas a las que pretendíamos dar una solución fueron las siguientes:

  • ¿Es capaz la inteligencia artificial de diseñar automáticamente las estructuras?
  • ¿La inteligencia artificial podrá suplantar la experiencia del ingeniero en el prediseño de las estructuras?
  • ¿Se pueden utilizar técnicas procedentes del campo de la Investigación Operativa en la optimización de las estructuras?
  • ¿Puede alcanzarse una economía importante en los costes de construcción de las estructuras sin merma de la calidad?
  • ¿Aparecerán nuevas patologías si los módulos de optimización automática empiezan a implantarse de forma habitual en los paquetes de cálculo comerciales?
  • ¿Deberían revisarse las normas de cálculo si se extiende el cálculo optimizado de estructuras?
  • ¿Deberán tenerse en cuenta estados límites no considerados hasta ahora en la comprobación de las estructuras optimizadas?
  • ¿Pueden optimizarse varios criterios a la vez? ¿Cómo son las estructuras de bajo coste y alta seguridad?
  • ¿Es posible valorar el coste de la seguridad integral de una estructura?
  • ¿Podemos diseñar estructuras de bajo coste y que a la vez consuman poco CO2 y energía para hacer una ingeniería sostenible?
  • ¿Se puede aplicar el concepto de “huella ecológica” al diseño de las estructuras?

 

Fueron nuestros tres primeros artículos internacionales, pero a fecha de hoy ya se han publicado más de 60 y dirigido una quincena de tesis doctorales, así como una decena de proyectos de investigación. La lista la podéis ver en el blog: http://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Referencias:

PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688.

PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610.

YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated AnnealingEngineering Structures30(3): 821-830.

 

Optimización de estructuras de hormigón mediante Simulated Annealing

Logo OptimizacionA continuación os dejo un capítulo de un libro de Simulated Annealing, escrito en abierto para su libre difusión, donde explicamos varias aplicaciones del algoritmo de Cristalización Simulada aplicada a estructuras de hormigón armado. En particular: muros ménsula, pórticos de carreteras, marcos de carreteras y pórticos de edificación. Su referencia es:

GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)

El concepto de puente

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León)
Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León). Imagen: © V. Yepes

Los puentes pueden considerarse como una de las construcciones cuyos orígenes se pierden en los albores del tiempo. Son las obras civiles por excelencia. Sin embargo, son mucho más que simples construcciones, en palabras de Juan José Arenas, “un puente ha sido, y es, sin género de dudas, un elemento indispensable para el desarrollo de la civilización y de la cultura”.

Los puentes a lo largo de la historia han identificado paisajes y se han erigido en articuladores del espacio. Javier Manterola  recuerda que “el puente es un elemento del camino”, por tanto, no puede entenderse sin él, pero tampoco sin el obstáculo. Es el paradigma del esfuerzo de la razón en su pretensión de superar todo tipo de dificultad y contratiempo. Para Miguel Aguilólos puentes … expresan la superación de un obstáculo, de una incomunicación, de una situación comprometida”. Es el afán sempiterno por vencer los límites que amordazan la voluntad humana.

El puente es la metáfora perfecta de la unión entre las partes, de la comunicación, del intercambio y del progreso. También significa el paso o tránsito hacia el otro lado, hacia lo desconocido, con toda la carga de magia y misterio que lo rodea. Es la victoria de la razón sobre las fuerzas de la Naturaleza, aunque para otros es fruto de la intervención del maligno. Fernández-Troyano  nos recuerda que la magia consiste en “sostener el camino en el aire”, dejándolo flotar contra todo pronóstico, sorteando el orden establecido.

Es un símbolo de poder para quien lo controla y un paso hacia la inmortalidad para quien lo construye. Para otros es propaganda, una “golosina visual”, una marca o un reclamo turístico. Sin embargo, para los ingenieros, un puente puede ser la más bella obra que la razón ha regalado a los humanos. Aprender a ver un puente, por tanto, va más allá de la simple contemplación; consiste en descubrir su verdad interna, aquello que el autor ha querido expresar y que, en esencia, es la posibilidad de crear una estructura sólida, bella y funcional, como diría Vitruvio.

Puente della Trinitá en Florencia.  Imagen: © V. Yepes

Para José Antonio Fernández-Ordoñez el paradigma vitruviano queda limitado en nuestra búsqueda de entender el lenguaje del puente, incluso si se añaden las componentes constructivas y económicas. En efecto, tal y como nos refiere él mismo, le “interesan especialmente otros tres aspectos menos tratados, pero no menos importantes, como son el estético, el histórico y el de integración con su entorno, es decir la naturaleza”.

Un puente es una obra de arte que, más allá de su arquitectura, presenta una dialéctica tensional que, bien entendida e interpretada, permite escucharla como una composición musical, con todos sus matices, timbres y tonos. Sin embargo, como cualquier obra de arte, es imposible descifrarla fuera de contexto, sin su entorno, sin la sociedad que la creó. Un puente crea, por tanto, otra dialéctica, la visual con el paisaje, creando o destruyendo el lugar, lo cual implica que el puente debe ser algo singular, creado “ad hoc”, que no sirve para cualquier sitio o circunstancia, y que debe ser fruto de la sociedad que lo ha visto nacer. Santiago Hernández (2009:11) expresa claramente esta idea cuando habla del “alma de los puentes”, es decir, “de la capacidad de provocar sentimientos en quienes los han construido y en aquellos que, cuando los contemplan, pueden ver a todos quienes han hecho posible que su obra sirva a miles de personas durante siglos. El puente es más que un libro, más que una película, más que un relato, más que una herramienta… el puente nos permite vivir una ‘experiencia’ que nos une a su origen, su pasado, su presente y su futuro”.

El protagonista, por tanto, es ese lenguaje dialéctico, interno del puente y externo con el contexto y el paisaje. Cuando el propio puente, su autor o su promotor prevalecen deliberadamente sobre este lenguaje, el puente pierde gran parte de su valor, prostituyendo su esencia. A este respecto, Miguel Aguiló  ya nos previene de estos peligros: “… lo puramente funcional va siempre acompañado de intenciones simbólicas, de emulación, de prestigio o de ostentación, y son precisamente estas finalidades no explícitas en la función las que fomentan o impulsan la desproporción”. Es quizás en este contexto cuando ciertas reflexiones de Florentino Regalado pueden adquirir mayor brillo: “una reflexión meticulosa, la reflexión y el sentido común, y unas ciertas dosis de humidad, se echan a faltar en lo que se proyecta y construye”.

Quizá Steinman y Watson fueron capaces de sintetizar lo que el puente significa para aquellos que los amamos profundamente, “porque un puente es algo más que una cosa de acero y piedra: es la concreción del esfuerzo de cabezas, corazones y manos humanas. Un puente es más que una suma de deformaciones y tensiones: es una expresión del impulso de los hombres -un desafío y una oportunidad de crear belleza-. Un puente es el símbolo del heroico esfuerzo de la humanidad hacia el dominio de las fuerzas de la naturaleza. Un puente es un monumento a la tenaz voluntad de conquista del género humano”.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.