UPV



Resultados de la búsqueda By Etiquetas: estructuras


El concepto de puente

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León)

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León). Imagen: © V. Yepes

Los puentes pueden considerarse como una de las construcciones cuyos orígenes se pierden en los albores del tiempo. Son las obras civiles por excelencia. Sin embargo, son mucho más que simples construcciones, en palabras de Juan José Arenas, “un puente ha sido, y es, sin género de dudas, un elemento indispensable para el desarrollo de la civilización y de la cultura”.

Los puentes a lo largo de la historia han identificado paisajes y se han erigido en articuladores del espacio. Javier Manterola  recuerda que “el puente es un elemento del camino”, por tanto, no puede entenderse sin él, pero tampoco sin el obstáculo. Es el paradigma del esfuerzo de la razón en su pretensión de superar todo tipo de dificultad y contratiempo. Para Miguel Aguilólos puentes … expresan la superación de un obstáculo, de una incomunicación, de una situación comprometida”. Es el afán sempiterno por vencer los límites que amordazan la voluntad humana.

El puente es la metáfora perfecta de la unión entre las partes, de la comunicación, del intercambio y del progreso. También significa el paso o tránsito hacia el otro lado, hacia lo desconocido, con toda la carga de magia y misterio que lo rodea. Es la victoria de la razón sobre las fuerzas de la Naturaleza, aunque para otros es fruto de la intervención del maligno. Fernández-Troyano  nos recuerda que la magia consiste en “sostener el camino en el aire”, dejándolo flotar contra todo pronóstico, sorteando el orden establecido.

Es un símbolo de poder para quien lo controla y un paso hacia la inmortalidad para quien lo construye. Para otros es propaganda, una “golosina visual”, una marca o un reclamo turístico. Sin embargo, para los ingenieros, un puente puede ser la más bella obra que la razón ha regalado a los humanos. Aprender a ver un puente, por tanto, va más allá de la simple contemplación; consiste en descubrir su verdad interna, aquello que el autor ha querido expresar y que, en esencia, es la posibilidad de crear una estructura sólida, bella y funcional, como diría Vitruvio.

Puente della Trinitá en Florencia.  Imagen: © V. Yepes

Para José Antonio Fernández-Ordoñez el paradigma vitruviano queda limitado en nuestra búsqueda de entender el lenguaje del puente, incluso si se añaden las componentes constructivas y económicas. En efecto, tal y como nos refiere él mismo, le “interesan especialmente otros tres aspectos menos tratados, pero no menos importantes, como son el estético, el histórico y el de integración con su entorno, es decir la naturaleza”.

Un puente es una obra de arte que, más allá de su arquitectura, presenta una dialéctica tensional que, bien entendida e interpretada, permite escucharla como una composición musical, con todos sus matices, timbres y tonos. Sin embargo, como cualquier obra de arte, es imposible descifrarla fuera de contexto, sin su entorno, sin la sociedad que la creó. Un puente crea, por tanto, otra dialéctica, la visual con el paisaje, creando o destruyendo el lugar, lo cual implica que el puente debe ser algo singular, creado “ad hoc”, que no sirve para cualquier sitio o circunstancia, y que debe ser fruto de la sociedad que lo ha visto nacer. Santiago Hernández (2009:11) expresa claramente esta idea cuando habla del “alma de los puentes”, es decir, “de la capacidad de provocar sentimientos en quienes los han construido y en aquellos que, cuando los contemplan, pueden ver a todos quienes han hecho posible que su obra sirva a miles de personas durante siglos. El puente es más que un libro, más que una película, más que un relato, más que una herramienta… el puente nos permite vivir una ‘experiencia’ que nos une a su origen, su pasado, su presente y su futuro”.

El protagonista, por tanto, es ese lenguaje dialéctico, interno del puente y externo con el contexto y el paisaje. Cuando el propio puente, su autor o su promotor prevalecen deliberadamente sobre este lenguaje, el puente pierde gran parte de su valor, prostituyendo su esencia. A este respecto, Miguel Aguiló  ya nos previene de estos peligros: “… lo puramente funcional va siempre acompañado de intenciones simbólicas, de emulación, de prestigio o de ostentación, y son precisamente estas finalidades no explícitas en la función las que fomentan o impulsan la desproporción”. Es quizás en este contexto cuando ciertas reflexiones de Florentino Regalado pueden adquirir mayor brillo: “una reflexión meticulosa, la reflexión y el sentido común, y unas ciertas dosis de humidad, se echan a faltar en lo que se proyecta y construye”.

Quizá Steinman y Watson fueron capaces de sintetizar lo que el puente significa para aquellos que los amamos profundamente, “porque un puente es algo más que una cosa de acero y piedra: es la concreción del esfuerzo de cabezas, corazones y manos humanas. Un puente es más que una suma de deformaciones y tensiones: es una expresión del impulso de los hombres -un desafío y una oportunidad de crear belleza-. Un puente es el símbolo del heroico esfuerzo de la humanidad hacia el dominio de las fuerzas de la naturaleza. Un puente es un monumento a la tenaz voluntad de conquista del género humano”.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño óptimo sostenible de muros de contrafuertes

Nos acaban de publicar en la revista de Elsevier del primer decil, Journal of Cleaner Production, un artículo donde se estudia el diseño de los muros de contrafuertes optimizados para reducir sus emisiones de CO2. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental que generan a lo largo de su ciclo de vida. El artículo lo podéis descargar GRATUITAMENTE hasta el 27 de agosto de 2017 en el siguiente enlace:

https://authors.elsevier.com/a/1VLOP3QCo9NDzg

Abstract:

This paper shows the differences between the design of a reinforced concrete structure considering two objectives to minimize; economic cost and CO2 emissions. Both objectives depend on the amount of two high carbon intensive materials: cement in the concrete and steel; therefore, these objectives are related. As the balance between steel and cement per m3 of concrete depends on several factors such as the type of structure, this study focuses on buttressed earth-retaining walls. Another factor that determines the balance between steel and concrete is the height of the wall. Thus, the methodology considers a parametric study for optimal designs of buttressed earth-retaining walls, where one of the parameters is the wall height. One of the objectives is to show the variation in cost when CO2 is minimized, respectful of minimizing the economic cost. The findings show that wall elements under bending-compressive strains (i.e. the stem of the buttressed retaining wall) perform differently depending on the target function. On one hand, the study reveals an upward trend of steel per unit volume of concrete in emission-optimized earth-retaining buttressed walls, compared to the cost-optimized. On the other hand, it is checked that unlike the cost-optimized walls, emission-optimized walls opt for a higher concrete class than the minimum class available. These findings indicate that emission-optimized walls penalize not only concrete volume, but also the cement content, to the extent that a higher concrete class outperforms in reduced emissions. Additionally, the paper outlines how and to what extent the design of this typology varies for the two analyzed objectives in terms of geometry and amount of materials. Some relevant differences influencing the geometry of design strategies are found.

Keywords:

Cargon emission; CO2; earth-retaining wall; reinforced concrete; Harmony search; Threshold accepting

Reference:

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884.

10 julio, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

¿Qué hacer antes de empezar a construir una estructura de hormigón?

La Instrucción de Hormigón Estructural EHE-08 indica claramente la necesidad de planificar y prevenir aspectos relacionados con los procedimientos constructivos, con la seguridad, con los impactos ambientales, con la trazabilidad de los materiales, entre otros. Se trata de evitar imprevistos durante la ejecución de las estructuras de hormigón. Hay que tener presente que el propio procedimiento constructivo (descimbrado, pretensado, etc.) pueden inducir acciones que pueden superar incluso las solicitaciones que tendrá la estructura durante su vida de servicio. Os dejo un objeto de aprendizaje donde explicamos brevemente este tipo de cuestiones. Espero que os sea de interés.

 

28 febrero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  |  

Resultados parciales del proyecto BRIDLIFE

ph_vigas-artesaEl objetivo del proyecto BRIDLIFE consiste en desarrollar una metodología que permita incorporar un análisis del ciclo de vida de vida de puentes de hormigón pretensado definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio. Los resultados esperados pretenden detallar qué tipologías, actuaciones de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos, dentro de una política de fuerte limitación presupuestaria que compromete seriamente las políticas de creación y conservación de las infraestructuras.

Este es un proyecto competitivo financiado por el Ministerio Español de Economía y Competitividad y fondos FEDER (proyecto de investigación BIA2014-56574-R), cuya duración abarca los años 2015-2017. En este momento, superado el ecuador del proyecto, podemos dar cuenta de algunos de los resultados ya publicados en revistas de impacto que espero os sean de interés.

Como antecedentes necesarios se indican algunos trabajos previos, fruto del proyecto HORSOST, precedente al actual. La optimización de un puente de vigas artesa se abordó con algoritmos híbridos basados en el recocido simulado [1] y algoritmos meméticos [2]; se utilizaron algoritmos de enjambres de luciérnagas para optimizar el coste y las emisiones de CO2 de vigas en I, incorporando la carbonatación en el ciclo de vida [3]; asimismo se evaluó el ciclo de vida de hormigones con distintas adiciones incluyendo la carbonatación y la durabilidad [4].

Las primeras aportaciones realizadas en el año 2015, ya dentro del proyecto, fueron la optimización de estribos abiertos mediante algoritmos híbridos de escalada estocástica [5]; la optimización del coste de puentes en vigas artesa con hormigón con fibras [6] y la optimización de las emisiones de CO2 de pasarelas de hormigón pretensado y sección en cajón [7]. Destaca también el trabajo desarrollado, basándose en una aproximación cognitiva, de una metodología que permite la toma de decisiones tras la aplicación de técnicas de optimización multiobjetivo [8].

En el año 2016 se empezaron a realizar aportaciones realizadas, fundamentalmente con la evaluación de los impactos sociales de las infraestructuras a lo largo del ciclo su ciclo de vida [9,10]. Se avanzó con la optimización de la energía embebida en puentes de vigas artesa [11] y en la optimización multiobjetivo del coste, las emisiones de CO2 y la seguridad a lo largo del ciclo de vida de puentes cajón [12]. Se han comparado puentes losa postesados y puentes prefabricados óptimos [13]. Otra aportación de interés se realizó con la colaboración del profesor Dan M. Frangopol, que realizó una estancia en nuestro grupo de investigación. Se comparó el coste del ciclo de vida de puentes cajón usando una aproximación basada en la fiabilidad [14].

Durante el año 2017, último del proyecto, existen trabajos ya publicados y otros en proceso de revisión. Se describen brevemente los ya publicados. Se aplicó el análisis de ciclo de vida completo atendiendo a todo tipo de impactos ambientales a muros de contrafuertes [15], introduciendo una metodología que se está aplicando a estructuras más complejas como los puentes. Se a introducido un metamodelo basado en redes neuronales para mejorar el rendimiento en el proceso de optimización multiobjetivo de puentes en cajón [16]. También se optimizaron las emisiones de CO2 en puentes de vigas artesa realizados con hormigones con fibras [17].

Aparte de estas aportaciones, directamente relacionadas con el proyecto BRIDLIFE, durante este periodo de tiempo destacan dos trabajos similares aplicados a la optimización del mantenimiento de pavimentos de carreteras desde los puntos de vista económicos y medioambientales [18,19].

Cabe destacar, por último, que durante los años 2015-2016 se han leído cinco tesis doctorales relacionadas, de forma directa o indirecta, con los objetivos desarrollados por el presente proyecto de investigación [20-24], existiendo otras cinco en estado avanzado de desarrollo.

Referencias:

[1] J.V. Martí, F. González-Vidosa, F.; V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures. 48 (2013) 342-352.

[2] J.V. Martí, V. Yepes, F. González-Vidosa, A. Luz, Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 30(3) (2014) 145-154.

[3] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm, Latin American Journal of Solids and Structures. 11(7) (2014) 1190-1205.

[4] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, International Journal of Life Cycle Assessment. 19(1) (2014) 3-12.

[5] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí, Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica, Informes de la Construcción. 67(540) (2015) e114.

[6] J.V. Martí, V. Yepes, F. González-Vidosa, Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement, Journal of Structural Engineering ASCE. 141(2) (2015) 04014114.

[7] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Engineering Structures. 92 (2015) 112-122.

[8] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering. 15(4) (2015) 1024-1036.

[9] E. Pellicer, L.A. Sierra, V. Yepes, Appraisal of infrastructure sustainability by graduate students using an active-learning method, Journal of Cleaner Production. 113 (2016) 884-896.

[10] L.A. Sierra, E. Pellicer, V. Yepes, Social sustainability in the life cycle of Chilean public infrastructure, Journal of Construction Engineering and Management ASCE. 142(1) (2016) 05015020.

[11] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, Journal of Cleaner Production. 120 (2016) 231-240.

[12] T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures. 125 (2016) 325-336.

[13] J.V. Martí, J. Alcalá, T. García-Segura, V. Yepes, Heuristic design of precast-prestressed concrete U-beam and post-tensioned cast-in-place concrete slab road bridges, International Conference on High Performance and Optimum Design of Structures and Materials (HPSM/OPTI 216) (2016), 10 pp.

[14] T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Comparing the life-cycle cost of optimal bridge designs using a lifetime reliability-based approach, Fifth International Symposium on Life -Cycle Civil Engineering (IALCCE 2016). (2016) 1146-1153.

[15] P. Zastrow, F. Molina-Moreno, T. García-Segura, J.V. Martí, V. Yepes. Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study, Journal of Cleaner Production. 140 (2017) 1037-1048.

[16] T. García-Segura, V. Yepes, J. Alcalá, Computer-support tool to optimize bridges automatically, International Journal of Computational Methods and Experimental Measurements. 5(2) (2017) 171-178.

[17] V. Yepes, J.V. Martí, T. García-Segura, Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm, International Journal of Computational Methods and Experimental Measurements. 5(2) (2017) 179-189.

[18] C. Torres-Machi, A. Chamorro, E. Pellicer, V. Yepes, C. Videla, Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making, Transportation Research Record. 2523 (2015) 56-63.

[19] V Yepes, C. Torres-Machí, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management. 22(4) (2016) 540-550.

[20] C. Torres-Machí, Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre, Tesis doctoral, Universitat Politècnica de València y Pontificia Universidad Católica de Chile, 2015.

[21] A.M. Rodriguez-Calderita, Optimización heurística de forjados de losa postesa, Tesis doctoral, Universitat Politècnica de València, 2015.

[22] A.J. Luz, Diseño óptimo de estribos abiertos de hormigón armado en puentes de carretera mediante optimización heurística, Tesis doctoral, Universitat Politècnica de València, 2016.

[23] F. Navarro-Ferrer, Modelos predictivos de las características prestacionales de hormigones fabricados en condiciones industriales, Tesis doctoral, Universitat Politècnica de València, 2016.

[24] T. García-Segura, Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria, Tesis doctoral, Universitat Politècnica de València, 2016.

26 noviembre, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Aplicación de métodos matemáticos en la estimación de la vida útil de los puentes

Fases de iniciación y propagación de la corrosión (Tuutti, 1982)

Fases de iniciación y propagación de la corrosión (Tuutti, 1982)

Cualquier tipo de infraestructura, ya sea una carretera o un puente, presenta un proceso de deterioro a lo largo de su vida útil debido al paso del tiempo y también al resultado de acciones y solicitaciones externas. Otros factores que pueden determinar la duración de esta vida útil pueden ser los errores o defectos ocurridos en fase de proyecto o bien durante el proceso de construcción. El tiempo, portanto, influye directamente en la mayor parte de las variables que intervienen en los procesos de deterioro, tanto en los físicos (acciones, características resistentes, interacción con el terreno, etc.) como en los químicos (corrosión, carbonatación, cloruros, sulfatos, etc.). El análisis de la vida útil de un puente es, por tanto, un proceso complejo que requiere identificar las variables que afectan a la durabilidad y su distribución temporal. El deterioro es un proceso inherente a las estructuras, y por tanto, inevitable, aunque los sistemas de gestión tratan de cuantificarlo y controlarlo mediante estrategias de mantenimiento. Sus efectos pueden ser devastadores, reduciendo drásticamente sus aspectos funcionales, portantes, confort y seguridad.

Para profundizar en este tema, os dejo un vídeo producido por el Instituto Eduardo Torroja donde Faviano Tavares explica la aplicación de los métodos matemáticos en la estimación de la vida útil de las estructuras. Espero que os sea de interés.

28 octubre, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Prueba de carga en puentes

Prueba de carga del puente Príncipe de Viana (Lérida), de Javier Manterola

Prueba de carga del puente Príncipe de Viana (Lérida), de Javier Manterola

Las pruebas de carga en los puentes tratan de comprobar que el proyecto y su ejecución se ha realizado de forma adecuada. Para ello se evalúa el comportamiento estructural comparando la respuesta real a la esperada según el modelo de cálculo empleado para su diseño y comprobación. También se realizan pruebas en el caso de puentes de servicio. En este último caso se trata de ampliar el conocimiento del estado de la estructura mediante la evaluación de su comportamiento estructural, bien periódicamente o como consecuencia de inspecciones que así lo aconsejen. Para ello, se obtendrán los desplazamientos y deformaciones en determinados elementos relevantes de la misma, bajo la acción de las cargas de prueba, comparándolas con las obtenidas en pruebas anteriores.

Os paso a continuación algunos vídeos sobre este tema. En el primero vemos un reportaje sobre la prueba de carga del viaducto del embalse de Contreras, en la Línea Ferroviaria de Alta Velocidad Madrid-Levante. Se colocaron sobre el tablero 54 camiones de 38 toneladas; en total, más de 2.000 toneladas.

(más…)

6 octubre, 2016
 
|   Etiquetas: ,  ,  |  

La optimización de estructuras

¿Cuándo empieza realmente la optimización de las estructuras? Difícil pregunta a resolver. Si bien los aspectos básicos relacionados con la optimización matemática se establecieron en los siglos XVIII y XIX con los trabajos de Lagrange o Euler, hay que esperar hasta los años 40 del siglo XX para que Kantorovich y Dantzing desarrollaran definitivamente los principios de la programación matemática.  Es a partir de la revolución informática de los años 70 cuando estas herramientas empiezan a ser empleadas habitualmente en numerosas aplicaciones en las ciencias, las ingenierías y los negocios. Sin embargo, el progreso de técnicas de optimización que no requieran derivadas y que se generen a través de reglas heurísticas, ha supuesto una auténtica revolución en el campo de la optimización de los problemas reales. En efecto, los métodos aproximados pueden utilizarse allí donde el elevado número de variables en juego impiden la resolución en un tiempo de cálculo razonable de los problemas mediante la programación matemática. A estos algoritmos de optimización aproximada, cuando su uso no está restringido a un solo tipo de problemas, la comunidad científica en el ámbito de la inteligencia artificial y la investigación operativa les ha dado el nombre de metaheurísticas. Este grupo incluye una amplia variedad de procedimientos inspirados en algunos fenómenos naturales, tales como los algoritmos genéticos, el recocido simulado o la optimización por colonias de hormigas . Liao et al. [1] presentan una revisión de la aplicación de los métodos heurísticos en el campo de la gestión del proyecto y de la construcción.

En relación con la optimización de las estructuras, si bien la información más antigua se remonta al siglo XV con los trabajos de Leonardo da Vinci y de Galileo Galilei sobre la disminución del peso de estructuras de madera, hay que esperar al siglo XIX con Maxwell y Levy, y a comienzos del siglo XX con Mitchell, para ver las primeras aportaciones en el diseño de mínimo peso de estructuras de arcos y cerchas metálicas. En 1994, Cohn y Dinovitzer [2] realizaron una amplia revisión de los métodos empleados en la optimización de estructuras, comprobando que la inmensa mayoría de las investigaciones llevadas a cabo hasta entonces se basaban en la programación matemática y en problemas más bien teóricos, con una preponderancia abrumadora de las estructuras metálicas frente a las estructuras de hormigón. Así, la aplicación de métodos heurísticos a la ingeniería estructural se remonta a los años 70 y 80 [3-5], siendo la computación evolutiva, y en especial los algoritmos genéticos, los métodos que más se han utilizado. La revisión de Kicinger et al. [6] proporciona un completo estado del arte de los métodos evolutivos aplicados al diseño estructural. Por otro lado, nuestro grupo de investigación, a través de su proyecto de investigación HORSOST, y más recientemente con el proyecto BRIDLIFE, ha presentado trabajos recientes de diseño automático y optimización de estructuras de hormigón armado con algoritmos genéticos [7] y con otras técnicas heurísticas [8-13], así como trabajos de optimización con hormigón pretensado [14,15] o de la optimización de las infraestructuras lineales [16].

Os dejo a continuación un vídeo tutorial donde se realiza una pequeña introducción al diseño optimización estructural. Espero que os sea de interés. Por cierto, si alguien se anima a hacer su tesis doctoral con nuestro grupo de investigación, será bien recibido.

Referencias:

[1] T.W. Liao, P.J. Egbelu, B.R. Sarker, S.S. Leu, Metaheuristics for project and construction management – A state-of-the-art review, Automation in Construction 20 (2011) 491-505.

[2] M.Z. Cohn, A.S. Dinovitzer, Application of structural optimization, ASCE Journal of Structural Engineering 120 (1994) 617-649.

[3] A. Hoeffler, U. Leysner, J. Weidermann, Optimization of the layout of trusses combining strategies based on Mitchel’s theorem and on biological principles of evolution, Proceedings of the Second Symposium on Structural Optimization (1973).

[4] M. Lawo, G. Thierauf, Optimal design for dynamic stochastic loading: a solution by random search, en: Optimization in structural design, University of Siegen, 1982, pp. 346-352.

[5] D.E. Goldberg, M.P. Samtani, Engineering optimization via genetic algorithms, Proceedings of the Ninth Conference on Electronic Computation ASCE (1986) 471-482.

[6] R. Kicinger, T. Arciszewski, K. De Jong, Evolutionary computation and structural design: A survey of the state-of-the-art, Computers & Structures 83 (2005) 1943-1978.

[7] F.J. Martinez, F. González-Vidosa, A. Hospitaler, V. Yepes, Heuristic optimization of RC bridge piers with rectangular hollow sections, Computers & Structures 88 (2010) 375-386.

[8] I. Paya-Zaforteza, V. Yepes, F. González-Vidosa, A. Hospitaler, On the Weibull cost estimation of building frames designed by simulated annealing, Meccanica 45 (2010) 693-704.

[9] V. Yepes, F. González-Vidosa, J. Alcala, P. Villalba, CO2-Optimization design of reinforced concrete retaining walls based on a VNS-Threshold acceptance strategy, Journal of Computing in Civil Engineering ASCE 26 (2012) 378-386.

[10] C. Perea, V. Yepes, J. Alcala, A. Hospitaler, F. González-Vidosa, A parametric study of optimum road frame bridges by threshold acceptance, Indian Journal of Engineering & Materials Sciences 17 (2010) 427-437.

[11] A. Carbonell, V. Yepes, F. González-Vidosa, Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 27 (2011) 227-235.

[12] A. Carbonell, F. González-Vidosa, V. Yepes, Design of reinforced concrete road vaults by heuristic optimization, Advances in Engineering Software 42 (2011) 151-159.

[13] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá,  Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7) (2014) 1190 – 1205.

[14] J.V. Martí, F. González-Vidosa, Design of prestressed concrete precast pedestrian bridges by heuristic optimization, Advances in Engineering Software 41 (2010) 916-922.

[15] J.V. Martí, F. González-Vidosa, V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures 48 (2013) 342-352.

[16] C. Torres-Machí, A. Chamorro, C. Videla, E. Pellicer, V. Yepes. An interative approach for the optimization of pavement maintenance mangement at the network level, The Scientific World Journal ID 524329 (2014).

[17] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures 92 (2015) 112-122.

[18] J.V. Martí, V. Yepes, F. González-Vidosa. Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE 141(2) (2015) 04014114.

[19] V. Yepes, J.V. Martí, T. García-Segura. Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction 49 (2015) 123-134.

[20] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez. A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4) (2015) 1024-1036.

[21] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí. Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540) (2015), e114.

[22] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92 (2015) 112-122.

[23] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120 (2016) 231-240.

 

14 julio, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

El profesor Dan M. Frangopol de estancia con nosotros en la Universitat Politècnica de València

Tenemos la gran suerte de contar con el profesor Dan M. Frangopol como profesor visitante en la Universitat Politècnica de València. Se trata de una estancia que solicitó nuestro grupo de investigación dentro del proyecto de investigación BRIDLIFE y que también ha sido apoyada por nuestra universidad. Es una magnífica oportunidad de poder colaborar en líneas de investigación que confluyen en la optimización multiobjetivo de estructuras a lo largo de su ciclo de vida. Ya estuvo nuestra investigadora Tatiana García Segura cuatro meses de estancia en la Universidad de Lehigh.

El curriculum y la trayectoria académica del profesor Frangopol es impresionante. Es el primer titular de la Cátedra Fazlur R. Khan de Ingeniería Estructural y Arquitectura de la Universidad de Lehigh, en Bethlehem, Pensilvania. Antes de incorporarse a esta universidad, fue profesor de ingeniería civil en la Universidad de Colorado en Boulder, donde ahora es profesor emérito. Sus líneas de investigación se centran en la aplicación de los conceptos probabilísticos y métodos de la ingeniería civil tales como la fiabilidad estructural, el diseño basado en la probabilidad y la optimización de edificios, puentes y barcos navales, vigilancia de la salud estructural, mantenimiento y gestión a lo largo de su ciclo de vida, gestión de infraestructuras en condiciones de incertidumbre, evaluación basada en el riesgo, sostenibilidad y resistencia a los desastres.

De acuerdo con el ASCE (Sociedad Estadounidense de Ingenieros Civiles) “Dan M. Frangopol is a preeminent authority in bridge safety and maintenance management, structural system reliability, and life-cycle civil engineering. His contributions have defined much of the practice around design specifications, management methods, and optimization approaches. From the maintenance of deteriorated structures and the development of system redundancy factors to assessing the performance of long-span structures, Dr. Frangopol’s research has not only saved time and money, but very likely also saved lives… Dr. Frangopol is a renowned teacher and mentor to future engineers.”

A parte de cuatro doctorados honoris causa, el profesor Frangopol presenta un índice h de 54 y más de 11900 citas (Google Scholar, 2015). Ha dirigido más de 40 tesis doctorales y ha sido profesor visitante en numerosas universidades de todo el mundo. Lo mejor es que veáis su currículum entero en su página web: http://www.lehigh.edu/~dmf206/

Os dejo a continuación los seminarios y conferencias que impartirá este mes en la Universitat Politècnica de València. Si tenéis alguna duda, me podéis enviar un correo electrónico. La entrada es libre. Os iré contando en sucesivos posts más sobre nuestra actividad este mes con el profesor Frangopol.

Descargar (PDF, 108KB)

Construcción sismo-resistente: las claves de los edificios chilenos

1625153¿Por qué los edificios chilenos modernos se comportan tan bien frente a los sismos? La calidad de la tecnología antisísmica empleada en las edificaciones chilenas, que permitió que solo un 1 % sufriera daños estructurales durante el terremoto del año 2010, el sexto más grande del mundo, ha impulsado el interés de varios países de la región por estos dispositivos. En estructuras de hasta 18 pisos se utiliza el aislamiento sísmico, que permiten interrumpir la estructura en su conexión a nivel del suelo y generar una interfaz para que el movimiento sísmico no se propague hacia la estructura. En cambio, en las construcciones de mayor altura se emplea la disipación de energía, que aprovecha el movimiento de la estructura para conectar entre dos puntos un sistema que disipe la energía producto de la deformación relativa de éstos.

Os dejo esta entrevista de televisión al decano de ingeniería de la Universidad Católica de Chile Juan Carlos de la Yera. Es muy ilustrativa e interesante.

También os paso un vídeo explicativo al respecto.

25 septiembre, 2015
 
|   Etiquetas: ,  ,  ,  |  

Mercado de Algeciras, de Eduardo Torroja

 

Mercado de abastos de Algeciras, de Eduardo Torroja Miret (1899-1961). Wikipedia

El Mercado de Abastos de Algeciras, es un edificio obra del ingeniero Eduardo Torroja Miret y ejecutado por el arquitecto Manuel Sánchez Arcas en 1935 en la Plaza Nuestra Señora de La Palma (Plaza Baja). Fue una estructura muy avanzada para su época, y su cúpula fue la más grande de la historia durante 30 años (1935-1965), hasta que se construyó el Astrodome en Houston (Texas).

El edificio cubre un espacio octogonal cubierto por una lámina esférica sin apoyos internos de 47,60 m de diámetro, 44,10 m de radio de curvatura, 9 cm de espesor en su zona central y 50 en la zona de unión a los pilares, perforada por una claraboya de 10 m de diámetro. La cúpula descansa toda ella sobre 8 pilares periféricos quedando volada en forma de visera en los tramos intermedios para dejar paso a la luz al interior. Se consigue así una estructura limpia y diáfana. Los pilares se encuentran ceñidos por un cinturón con dieciséis redondos de 30 mm, atrevimiento que luego repetiría Torroja en las viseras del Hipódromo de la Zarzuela de Madrid.

El propio Torroja en su libro “Razón y ser de los tipos estructurales” nos explica el funcionamiento de esta estructura: “Los faldones de la bóveda, entre soporte y soporte, vienen escotados por los lunetos que forman las bóvedas cilíndricas rebajadas del contorno, las cuales, a la par que proporcionan con sus marquesinas a las puertas, rigidizan la cúpula y encauzan los haces de isostáticas hacia los soportes.  Al tesar el anillo octogonal que recoge y equilibra los empujes radiales de la cúpula sobre los soportes, mediante los tensores de rosca de que iban provistas sus barras, el casquete esférico quedó equilibrado; e incluso, forzando ligeramente la tensión de aquél, se notó perfectamente cómo toda la parte central de la cúpula se levantaba despegando de su cimbra, lo que permitió desmontar ésta libremente sin ninguno de los cuidados que normalmente requieren estos descimbramientos“.

Os dejo a continuación un vídeo donde D. Rafael López Palanco, Catedrático de Estructuras de la Universidad de Sevilla, realiza una visita técnica al Mercado de Abastos de Algeciras, enmarcado en las proyecciones Visitas de Obra del proyecto I+D+i: Fuentes para la historia de las obras públicas, cofinanciado por la Agencia de Obra Pública de la Junta de Andalucía (AOPA) de la Consejería de Fomento y Vivienda. Espero que os guste.

 

 

16 julio, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia