Revisión de los procedimientos de optimización heurística de las estructuras

Figura 1. Diseño tradicional de estructuras por prueba y error (Yepes, 2017)

El diseño de las estructuras se ha basado fundamentalmente en la experiencia del ingeniero proyectista. La topografía y las condiciones de tráfico, entre otros, determinan el diseño de un puente. A partir de ahí, las dimensiones de la sección transversal, el tipo de hormigón y la disposición general de las armaduras se definen atendiendo a la experiencia profesional y a las recomendaciones y criterios de diseño (Figura 1). A continuación, se ajustan el resto de variables, tras comprobar el cumplimiento de los estados límite último y de servicio. Si el proyectista quiere mejorar el diseño propuesto, normalmente se realiza un proceso de prueba y error, de forma que tras varios tanteos, se intenta reducir el consumo de materiales, y por tanto, el coste de la estructura. Frente a este planteamiento, los métodos heurísticos emplean técnicas basadas en la inteligencia artificial para seleccionar un diseño, analizar la estructura, controlar las restricciones y rediseñar la estructura modificando las variables hasta conseguir optimizar la función objetivo.

Cohn y Dinovitzer (1994) revisaron la investigación realizada en su momento en relación con la optimización de las estructuras y señalaron la brecha existente entre los estudios teóricos y la aplicación en problemas estructurales reales. Sarma y Adeli (1998) analizaron años más tarde los estudios relacionados con la optimización matemática de las estructuras, complementada más recientemente por Hare et al. (2013) que estudiaron la aplicación de los algoritmos heurísticos en la optimización estructural. Los algoritmos heurísticos difieren en cuanto a planteamiento y aplicabilidad de los métodos matemáticos exactos. De hecho, la optimización heurística resulta muy efectiva pues, aunque no garantiza la obtención del óptimo global del problema, proporciona soluciones casi óptimas en tiempos de cálculo razonables. Esta ventaja cobra importancia en la optimización de estructuras reales, donde el número de variables crece extraordinariamente de forma que desborda el tiempo de cálculo de los métodos exactos de optimización. Además, la programación matemática requiere el cálculo de gradientes de las restricciones, mientras que la optimización heurística incorpora las restricciones de diseño de una manera directa (Lagaros et al., 2006).

Las técnicas metaheurísticas utilizan estrategias de búsqueda para localizar óptimos locales en grandes espacios de soluciones de forma efectiva. Un ejemplo de ello son los Algoritmos Genéticos (Genetic Algorithms, GAs), que son procedimientos de búsqueda poblacionales inspirados en la evolución natural (Holland, 1975). Así, los GAs generan soluciones de alta calidad a través del cruce genético con otros individuos de una población y la mutación de algunas de sus características a lo largo de generaciones. Los padres suelen seleccionarse atendiendo a su aptitud (Coello, 1994) y los hijos mantienen ciertas características de sus padres. En cada generación sobreviven los hijos con mayores aptitudes. Además, para evitar la convergencia prematura del algoritmo, se utiliza un operador de mutación, al igual que ocurre en la Naturaleza, que cambia aleatoriamente de vez en cuando alguna de las características de las nuevas soluciones. Una variante a esta técnica son los Algoritmos Meméticos (Moscato, 1989), donde cada individuo de la nueva generación se mejora mediante una búsqueda local con el objetivo de mejorar los genes para que los padres obtengan mejores resultados en las siguientes generaciones. Esta técnica, por tanto, aplica los GAs a poblaciones de óptimos locales.

La inteligencia de enjambre (swarm intelligence) es una metaheurística poblacional empleada en los problemas de optimizacón. Estos algoritmos imitan el comportamiento colectivo de los sistemas descentralizados y auto-organizados, tales como algunas colonias de insectos, basándose en la interacción entre los vecinos, pero que siguen un patrón global. Los algoritmos de enjambre difieren en filosofía de los algoritmos genéticos porque utilizan la cooperación en lugar de la competencia (Dutta et al., 2011). Entre los algoritmos pertenecientes a este grupo, basados en el comportamiento biológico, destaca la optimización de colonias de hormigas (Ant Colony Optimization, ACO), la optimización de enjambre de partículas (Particle Swarm Optimization, PSO), las colonias de abejas artificiales (Artificial Bee Colony, ABC), la optimización en enjambres de luciérnagas (Glowworm Swarm Optimization, GSO), entre otros. ACO basa su estrategia en el comportamiento de las hormigas, que dejan un rastro de feromonas para encontrar alimento de forma efectiva (Colorni et al., 1991); PSO simula un sistema social simplificado (Kennedy y Eberhart, 1995); ABC imita el comportamiento alimentario forrajero de las abejas (Karaboga y Basturk, 2008); GSO imita un movimiento de las luciérnagas hacia los vecinos más brillantes (Krishnanand y Ghose, 2009).

Las metaheurísticas poblacionales presentan una amplia capacidad de búsqueda en paralelo y una fuerte robustez. Sin embargo, para mejorar la intensificación de la búsqueda, estos algoritmos suelen combinarse con otras heurísticas de búsqueda local. Esta hibridación consigue explotar la diversificación en la búsqueda poblacional con la intensificación de la búsqueda local. Luo y Zhang (2011) comprobaron que el algoritmo híbrido presenta una convergencia más rápida, una mayor precisión y es más efectivo en la optimización de problemas ingenieriles. Blum et al. (2011) estudiaron las ventajas de la hibridación de las metaheurísticas en el caso de la optimización combinatoria.

El recocido simulado (Simulated Annealing, SA), propuesto por Kirkpatrick et al. (1983), constituye uno de los algoritmos utilizados en la optimización estructural. Este algoritmo se basa en el fenómeno físico del proceso de recocido de los metales. La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. SA presenta la ventaja de admitir soluciones de peor calidad al principio de la búsqueda, lo cual permite eludir óptimos locales de baja calidad. La aceptación por umbrales (Threshold Accepting, TA), propuesto por Dueck y Scheuer (1990), tolera también opciones de peor calidad para eludir los óptimos locales. La diferencia entre SA y TA es que el criterio de aceptación de una solución peor es probabilista en el primer caso y determinista en el segundo. Los algoritmos genéticos se han hibridado con el recocido simulado en el diseño óptimo de puentes prefabricados de hormigón pretensado (Martí et al., 2013; Martí et al., 2016) y vigas en I de hormigón armado (RC) (Yepes et al., 2015a). Otras estrategias de hibridación también han demostrado su eficiencia con PSO (Shieh et al., 2011, Valdez et al., 2011, Wang et al., 2013) y ACO (Behnamian et al, 2009, Chen et al., 2012).

Qu et al. (2011) señalaron la lentitud en la convergencia de los algoritmos GSO; del mismo modo Zhang et al. (2010) apuntaron ciertas deficiencias de estos algoritmos en la búsqueda del óptimo global. Es por ello que se ha hibridado SA con GSO (García-Segura et al., 2014c, Yepes et al., 2015b) para combinar la diversificación de la búsqueda de GSO con la intensificación de la búsqueda de SA para encontrar de forma efectiva un óptimo de elevada calidad. García-Segura et al. (2014c) mostraron cómo un algoritmo híbrido de optimización de enjambre de luciérnagas (SAGSO) obtuvo resultados considerablemente mejores en cuanto a calidad y tiempo de cálculo. SAGSO superó al GSO en términos de eficiencia, precisión y convergencia. Sin embargo, se requiere una buena calibración para garantizar soluciones de alta calidad con un tiempo de cómputo corto.

La búsqueda de la armonía (Harmony Search, HS) constituye una heurística propuesta por Geem et al. (2001) inspirada en el jazz, donde se trata de armonizar u construir sucesiones de acordes razonables. Las notas, los instrumentos y la mejor armonía representan los valores, las variables y el óptimo global. Alberdi y Khandelwal (2015) compararon ACO, GA, HS, PSO, SA y TS en la optimización del diseño de marcos de acero, comprobando que los mejores resultados se obtenían con HS. La búsqueda de la armonía se ha utilizado para optimizar columnas rectangulares de hormigón armado (de Medeiros y Kripka, 2014), forjados compuestos (Kaveh y Shakouri Mahmud Abadi, 2010) y pórticos planos de hormigón armado (Akin y Saka, 2015). Alia y Mandava (2011) recogieron en su trabajo las variantes utilizadas para hibridar con HS. García-Segura et al. (2015) emplearon un algoritmo de búsqueda de la armonía hibridada con la aceptación por umbrales para encontrar diseños óptimos sostenibles de puentes peatonales de hormigón postesado.

La optimización de los puentes atrajo la atención de los ingenieros a partir de la década de los años 70, incluyendo los puentes viga de acero, (Wills, 1973), el refuerzo de los puentes losa (Barr et al., 1989), los puentes viga de hormigón pretensado (Aguilar et al., 1973, Lounis y Cohn, 1993), y los puentes en cajón postesados construidos “in situ” (Bond, 1975; Yu et al., 1986). Desde la aparición de la inteligencia artificial, se ha puesto mayor énfasis en el uso de técnicas de optimización heurística para optimizar las estructuras. Srinivas y Ramanjaneyulu (2007) usaron redes neuronales artificiales y algoritmos genéticos para optimizar el coste de un puente de vigas en T. Rana et al. (2013) propusieron una optimización evolutiva para minimizar el coste de una estructura de puente continuo de hormigón pretensado de dos tramos. Martí et al. (2013) implementaron un algoritmo de recocido simulado híbrido para encontrar las soluciones más económicas de puentes prefabricados de hormigón pretensado de vigas artes. El uso de refuerzos de fibra de acero en ese tipo de puente se estudió posteriormente con algoritmos meméticos (Martí et al., 2015). Se propusieron algoritmos genéticos para optimizar las cubiertas poliméricas reforzadas con fibras híbridas y los puentes atirantados (Cai y Aref, 2015).

También se han optimizado otro tipo de estructuras con algoritmos heurísticos, como los forjados prefabricados (de Albuquerque et al., 2012), columnas de hormigón armado (Park et al., 2013; Nigdeli et al., 2015), columnas de acero (Kripka y Chamberlain Pravia, 2013), marcos espaciales de acero (Degertekin et al., 2008), marcos de hormigón armado (Camp y Huq, 2013), pórticos de hormigón armado (Payá-Zaforteza et al., 2010), vigas en I de hormigón armado (García-Segura et al., 2014c; Yepes et al., 2015a), pórticos de carreteras (Perea et al., 2008), pilas altas de viaductos (Martínez et al., 2011; 2013), muros de contención (Gandomi et al., 2015; Pei y Xia, 2012; Yepes et al., 2008, 2012; Molina-Moreno et al., 2017a), zapatas de hormigón armado (Camp y Assadollahi, 2013; Camp y Huq, 2013), bóvedas de pasos inferiores en carreteras (Carbonell et al., 2011) y estribos de puentes (Luz et al., 2015).

Referencias:

  • Aguilar, R.J.; Movassaghi, K.; Brewer, J.A.; Porter, J.C. (1973). Computerized optimization of bridge structures. Computers & Structures, 3(3), 429–442.
  • Akin, A.; Saka, M.P. (2015). Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions. Computers & Structures, 147, 79–95.
  • Alberdi, R.; Khandelwal, K. (2015). Comparison of robustness of metaheuristic algorithms for steel frame optimization. Engineering Structures, 102, 40–60.
  • Alia, O.M.; Mandava, R. (2011). The variants of the harmony search algorithm: an overview. Artificial Intelligence Review, 36(1), 49–68.
  • Barr, A.S.; Sarin, S.C.; Bishara, A.G. (1989). Procedure for structural optimization. ACI Structural Journal, 86(5), 524–531.
  • Behnamian, J.; Zandieh, M.; Fatemi Ghomi, S.M.T. (2009). Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with Applications, 36(6), 9637–9644.
  • Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135–4151.
  • Bond, D. (1975). An examination of the automated design of prestressed concrete bridge decks by computer. Proceedings of the Institution of Civil Engineers, 59(4), 669–697.
  • Cai, H.; Aref, A.J. (2015). A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges. Structural and Multidisciplinary Optimization, 52(3), 583–594.
  • Camp, C.V.; Assadollahi, A. (2013). CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Structural and Multidisciplinary Optimization, 48(2), 411–426.
  • Camp, C.V.; Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363–372.
  • Carbonell, A.; González-Vidosa, F.; Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159.
  • Chen, S.M.; Sarosh, A.; Dong, Y.F. (2012). Simulated annealing based artificial bee colony algorithm for global numerical optimization. Applied Mathematics and Computation, 219(8), 3575–3589.
  • Coello, C. (1994). Uso de Algoritmos Genéticos para el Diseño Óptimo de Armaduras. In Congreso Nacional de Informática “Herramientas Estratégicas para los Mercados Globales”, pp. 290–305. Fundación Arturo Rosenblueth, México, D.F.
  • Cohn, M.Z.; Dinovitzer, A.S. (1994). Application of Structural Optimization. Journal of Structural Engineering, 120(2), 617–650.
  • Colorni, A.; Dorigo, M.; Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceeding of ECALEuropean Conference on Artificial Life, pp. 134–142. Paris: Elsevier.
  • de Albuquerque, A.T.; El Debs, M.K.; Melo, A.M.C. (2012). A cost optimization-based design of precast concrete floors using genetic algorithms. Automation in Construction, 22, 348–356.
  • de Medeiros, G.F. Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59, 185–194.
  • Degertekin, S.O.; Saka, M.P.; Hayalioglu, M.S. (2008). Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm. Engineering Structures, 30(1), 197–205.
  • Dueck, G.; Scheuer, T. (1990). Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161–175.
  • Dutta, R.; Ganguli, R.; Mani, V. (2011). Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Materials and Structures, 20(10), 105018.
  • Gandomi, A.H.; Kashani, A.R.; Roke, D.A.; Mousavi, M. (2015). Optimization of retaining wall design using recent swarm intelligence techniques. Engineering Structures, 103, 72–84.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014b). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014c). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Geem, Z.W.; Kim, J.H.; Loganathan, G.V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.
  • Hare, W.; Nutini, J.; Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19–28.
  • Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA.
  • Karaboga, D.; Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.
  • Kaveh, A.; Shakouri Mahmud Abadi, A. (2010). Cost optimization of a composite floor system using an improved harmony search algorithm. Journal of Constructional Steel Research, 66(5), 664–669.
  • Kennedy, J.; Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 – International Conference on Neural Networks, Vol. 4, pp. 1942–1948. IEEE.
  • Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.
  • Kripka, M.; Chamberlain Pravia, Z.M. (2013). Cold-formed steel channel columns optimization with simulated annealing method. Structural Engineering and Mechanics, 48(3), 383–394.
  • Krishnanand, K.N.; Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93–119.
  • Lagaros, N.D.; Fragiadakis, M.; Papadrakakis; M.; Tsompanakis, Y. (2006). Structural optimization: A tool for evaluating seismic design procedures. Engineering Structures, 28(12), 1623–1633.
  • Lounis, Z.; Cohn, M.Z. (1993). Optimization of precast prestressed concrete bridge girder systems. PCI Journal, 38(4), 60–78.
  • Luo, Q.F.; Zhang, J.L. (2011). Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Constrained Engineering Problem. Advanced Materials Research, 204-210, 823–827.
  • Luz, A.; Yepes, V.; González-Vidosa, F.; Martí, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352.
  • Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114.
  • Martínez-Martín, F. J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6), 723–740.
  • Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432.
  • Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017a). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134, 205-216.
  • Molina-Moreno, F.; Martí, J.V.; Yepes, V. (2017b). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884.
  • Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program (report 826). Caltech, Pasadena, California, USA.
  • Nigdeli, S.M.; Bekdas, G.; Kim, S.; Geem, Z. W. (2015). A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Structural Engineering and Mechanics, 54(6), 1097–1109.
  • Park, H.; Kwon, B.; Shin, Y.; Kim, Y.; Hong, T.; Choi, S. (2013). Cost and CO2 emission optimization of steel reinforced concrete columns in high-rise buildings. Energies, 6(11), 5609–5624.
  • Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610.
  • Payá-Zaforteza, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693–704.
  • Payá-Zaforteza, I.; Yepes, V.; Hospitaler, A.; González-Vidosa, F. (2009). CO2-optimization of reinforced concrete frames by simulated annealing. Engineering Structures, 31(7), 1501–1508.
  • Pei, Y.; Xia, Y. (2012). Design of Reinforced Cantilever Retaining Walls using Heuristic Optimization Algorithms. Procedia Earth and Planetary Science, 5, 32–36.
  • Qu, L.; He, D.; Wu, J. (2011). Hybrid Coevolutionary Glowworm Swarm Optimization Algorithm with Simplex Search Method for System of Nonlinear Equations. Journal of Information & Computational Science, 8(13), 2693– 2701.
  • Rana, S.; Islam, N.; Ahsan, R.; Ghani, S.N. (2013). Application of evolutionary operation to the minimum cost design of continuous prestressed concrete bridge structure. Engineering Structures, 46, 38–48.
  • Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.
  • Shieh, H.L.; Kuo, C.C.; Chiang, C.M. (2011). Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Applied Mathematics and Computation, 218(8), 4365–4383.
  • Srinivas, V.; Ramanjaneyulu, K. (2007). An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks. Advances in Engineering Software, 38(7), 475–487.
  • Valdez, F.; Melin, P.; Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing, 11(2), 2625–2632.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • Wills, J. (1973). A mathematical optimization procedure and its application to the design of bridge structures. Wokingham, Berkshire, United Kingdom.
  • Yepes, V.; Alcalá, J.; Perea, C.; González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821–830.
  • Yepes, V.; Díaz, J.; González-Vidosa, F.; Alcalá, J. (2009). Caracterización estadística de tableros pretensados para carreteras. Revista de la Construcción, 8(2), 95-109.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yu, C.H.; Gupta, N.C. Das; Paul, H. (1986). Optimization of prestressed concrete bridge girders. Engineering Optimization, 10(1), 13–24.
  • Zhang, J.; Zhou, G.; Zhou, Y. (2010). A New Artificial Glowworm Swarm Optimization Algorithm Based on Chaos Method. In B. Cao, G. Wang, S. Chen, & S. Guo (Eds.), Quantitative Logic and Soft Computing 2010, Vol. 82, pp. 683–693. Berlin, Heidelberg: Springer Berlin Heidelberg.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La aplicación de la toma de decisiones multicriterio a la gestión de presas

Presa de Aldeadávila. Wikipedia

La gestión del mantenimiento de las presas existentes constituye un proceso complejo que requiere la aplicación de la toma de decisiones atendiendo a  múltiples criterios para evitar las severas consecuencias sociales, económicas y medioambientales que pueden acarrear. A continuación os dejo un artículo científico que nos acaban de publicar al respecto. Realiza una revisión profunda del estado del arte en la materia. Espero que os sea de interés.

Hasta el 17 de marzo de 2017 te puedes descargar GRATUITAMENTE el artículo en el siguiente enlace:

https://authors.elsevier.com/a/1USLM3QCo9NAmx

El artículo completo lo podéis encontrar aquí:  http://www.sciencedirect.com/science/article/pii/S0959652617301051

 

Abstract:

Decisions for aging-dam management requires a transparent process to prevent the dam failure, thus to avoid severe consequences in socio-economic and environmental terms. Multiple criteria analysis arose to model complex problems like this. This paper reviews specific problems, applications and Multi-Criteria Decision Making techniques for dam management. Multi-Attribute Decision Making techniques had a major presence under the single approach, specially the Analytic Hierarchy Process, and its combination with Technique for Order of Preference by Similarity to Ideal Solution was prominent under the hybrid approach; while a high variety of complementary techniques was identified. A growing hybridization and fuzzification are the two most relevant trends observed. The integration of stakeholders within the decision making process and the inclusion of trade-offs and interactions between components within the evaluation model must receive a deeper exploration. Despite the progressive consolidation of Multi-Criteria Decision Making in dam management, further research is required to differentiate between rational and intuitive decision processes. Additionally, the need to address benefits, opportunities, costs and risks related to repair, upgrading or removal measures in aging dams suggests the Analytic Network Process, not yet explored under this approach, as an interesting path worth investigating.

Keywords:

  • Ageing dams;
  • Dam management;
  • Decision making;
  • Multiple criteria analysis;
  • Risk

Referencia:

ZAMARRÓN-MIEZA, I.; YEPES, V.; MORENO-JIMÉNEZ, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230. http://www.sciencedirect.com/science/article/pii/S0959652617301051