Curso en línea de “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza próximamente. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos de las técnicas y equipos necesarios para la compactación de suelos, así como para su control, rendimientos y costes. El curso se centra especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la compactación, tanto superficial como profunda. Es un curso de espectro amplio que incide en el conocimiento de la maquinaria y procesos constructivos. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual, donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Asimismo, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Este curso único, impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Los objetivos de aprendizaje son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria y de las técnicas de compactación superficial y profunda de terrenos
  2. Evaluar y seleccionar la mejor maquinaria y técnica de compactación en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Composición y clasificación de suelos
  • – Lección 2. Materiales de terraplén
  • – Lección 3. Efectos de la compactación y deformaciones
  • – Lección 4. Porosidad y permeabilidad
  • – Lección 5. La curva de compactación
  • – Lección 6. Densidad de los suelos granulares
  • – Lección 7. Ensayo Proctor
  • – Lección 8. Sistemas de compactación: compactación normal y seca
  • – Lección 9. Ensayos de resistencia del suelo
  • – Lección 10. Fundamentos de las técnicas de compactación
  • – Lección 11. Clasificación de los equipos de compactación mecánica
  • – Lección 12. Apisonadoras estáticas de rodillos lisos
  • – Lección 13. Compactadores estáticos de patas apisonadoras
  • – Lección 14. Compactadores estáticos de ruedas neumáticas
  • – Lección 15. Rodillos de malla y compactador por impactos con rodillo lobular
  • – Lección 16. Introducción a la compactación vibratoria
  • – Lección 17. Compactadores vibratorios cilíndricos
  • – Lección 18. Compactadores de pequeño tamaño y de tracción manual
  • – Lección 19. Compactadores de zanja
  • – Lección 20. Selección del equipo y método de compactación
  • – Lección 21. Espesor de tongada y número de pasadas óptimo: tramo de prueba
  • – Lección 22. Normas y recomendaciones de trabajo
  • – Lección 23. El control de la compactación
  • – Lección 24. Condiciones de seguridad de los compactadores
  • – Lección 25. Costes y productividad de la compactación
  • – Lección 26. Compactación de aglomerado asfáltico
  • – Lección 27. Mejora del terreno mediante vibrocompactación
  • – Lección 28. Mejora del terreno mediante Terra-Probe
  • – Lección 29. Método vibroalas para mejora de suelos no cohesivos
  • – Lección 30. Compactación por resonancia de suelos
  • – Lección 31. Compactación dinámica
  • – Lección 32. Compactación dinámica rápida
  • – Lección 33. Sustitución dinámica
  • – Lección 34. Compactación con explosivos
  • – Lección 35. Compactación por impulso eléctrico
  • – Lección 36. Refuerzo del terreno mediante inclusiones rígidas
  • – Lección 37. Pilotes de compactación
  • – Lección 38. Columna de grava mediante vibrodesplazamiento
  • – Lección 39. Columna de grava mediante vibrosustitución
  • – Lección 40. Columnas de grava ejecutadas por medios convencionales
  • – Lección 41. Columnas de grava compactada
  • – Lección 42. Columnas de arena compactada
  • – Lección 43. La estabilización de suelos
  • – Lección 44. Estabilización de suelos con cal
  • – Lección 45. Estabilización de suelos con cemento
  • – Lección 46. Estabilización de suelos con ligantes bituminosos
  • – Lección 47. Problema resuelto sobre rendimientos y costes
  • – Lección 48. Problema resuelto sobre curva de compactación
  • – Lección 49. Problema resuelto sobre tramo de prueba
  • – Lección 50. Problema resuelto sobre control de calidad
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 8 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

Referencias:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Estabilización de suelos con cemento

Figura 1. https://www.obrasurbanas.es/stabile-estabilizacion-suelos-carreteras/

Un suelo se puede estabilizar con cemento. Según el artículo 512 del PG3, consiste en la mezcla íntima, convenientemente compactada, de terreno, cemento, agua y eventualmente adiciones, a la cual se le exigen unas determinadas condiciones de insusceptibilidad al agua, resistencia y durabilidad.

En efecto, al fraguar e hidratarse los silicatos y aluminatos cálcicos anhidros, une las partículas del suelo, reduce su sensibilidad al agua, disminuye la deformación del suelo estabilizado y proporciona cierta resistencia a tracción según la dosificación empleada. Se pueden estabilizar tanto los suelos granulares como los de grano fino, excepto si son muy plásticos o presentan mucha humedad. En este último caso, se podrían tratar previamente con cal. No se podrán utilizar suelos con material vegetal u orgánica, o cualquier otra sustancia que perjudiquen el fraguado del cemento.

Según las propiedades de la mezcla resultante, el suelo estabilizado con cemento se puede dividir en dos grupos:

  • Suelos mejorados con cemento, al que se agrega una cantidad relativamente pequeña de cemento para mejorar algunas propiedades, como es su sensibilidad a los cambios de humedad o su mayor capacidad de soporte, quedando suelto el material tras su tratamiento. Es una técnica orientada a mejorar las explanadas. La mezcla se realiza in situ, con dosificaciones inferiores al 3% sobre el peso seco del suelo. El PG3 los clasifica en S-EST 1 y S-EST 2.
  • Suelos estabilizados con cemento, donde tras el fraguado del cemento, se obtiene un material con cierta resistencia mecánica. No se trata de un hormigón, pues los granos no se ven envueltos en pasta de cemento, sino que su unión es puntual. El PG3 los divide en S-EST 3 si la resistencia a compresión a 7 días es de 1,5 MPa, para uso en explanadas, y los suelos estabilizados para subbases y bases, donde se eleva dicha resistencia mínima a 2,5 MPa. En este último caso, su denominación habitual es suelocemento, cuya fabricación se realiza en central. Se exige un adecuado curado, lo que implica que tras la extensión y compactación de la capa, se riega con una emulsión bituminosa de rotura rápida para evitar la evaporación prematura.

Se necesitaría un elevado contenido de cemento si el suelo presenta muchos finos plásticos, lo que, además, dificultaría el mezclado. Por ello se limitan los tratamientos con cemento a suelos que cumplan las siguientes condiciones:

  • Límite líquido < 40 en los S-EST 2 y S-EST 3
  • Índice de plasticidad < 15
  • Cernido ponderal por el tamiz UNE 2 mm > 20 %
  • Cernido ponderal por el tamiza UNE 0,063 mm ≤ 35 % (50 % en los S-EST 1 y S-EST 2)

Con carácter general, el procedimiento constructivo de una estabilización con cemento para por las siguientes fases: preparación del terreno, mezclado “in situ” o en central, compactación, ejecución de juntas y curado de la mezcla. Normalmente se compacta por capas de 20 a 30 cm.

Los cementos más adecuados para estabilizar suelos son aquellos que presentan un plazo elevado para que se puedan trabajar fácilmente, un moderado calor de hidratación y un lento desarrollo de resistencia que minimice las fisuras de retracción. Por ello son adecuados cementos con mayor contenido de adiciones activas (escorias de horno alto, puzolanas naturales y cenizas volantes), tales como los tipos CEM III, IV y V.

Os dejo un enlace al “Manual de estabilización de suelos con cemento o cal” que creo os puede ser de ayuda. También os aconsejo acudir a la página web de ANTER (Asociación Nacional Técnica de Suelos y Reciclado de Firmes).

Aquí podéis ver una pequeña explicación de la profesora Ana María Pérez, de la Universitat Politècnica de València, de lo que es un suelocemento.

Os dejo algunos vídeos de esta técnica de mejora de suelos.

A continuación os dejo una guía de soluciones para obras de estabilización de suelos, ejecución de suelo-cemento in situ y reciclado de firmes elaborada por la Asociación Nacional Técnica de Estabilizados de Suelos y Reciclados de Firmes (ANTER).

Descargar (PDF, 5.38MB)

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con ligantes bituminosos

Figura 1. Estabilización de suelos con betún espumado. Fuente: https://www.i-q.net.au/main/research-to-expand-foamed-bitumen-applications

El uso de ligantes hidrocarbonados puede estabilizar suelos granulares con pocos finos y baja plasticidad. Consiste en la mezcla íntima y homogénea, compactada adecuadamente, de terreno, agua, ligante bituminoso y, en su caso, adiciones. El ligante bituminoso mejora las características resistentes del suelo, reduciendo su capacidad de absorción de agua e incrementando su cohesión.

Se trata de una técnica poco empleada por su elevado coste, pero que puede ser interesante, por ejemplo, con arenas de granulometría uniforme, como sería el caso de algunas regiones del norte de Francia, Países Bajos, la Pampa argentina o Arabia Saudí (Kraemer et al., 1999). También se emplea donde el coste de los betunes es asequible. Sería adecuado para suelos con menos del 20% del peso pasando por el tamiz 0,080 UNE, con un índice plástico IP<10, que puedan ser pulverizados económicamente y que estén exentos de cantidades perjudiciales de materia orgánica, arcillas de alta plasticidad o materiales micáceos (García Valcarce, 2003). La fracción cernida por el tamiz 0,40 de UNE cumplirá las condiciones siguientes: LL < 35 e IP < 15.

Dependiendo del tipo de suelo, método constructivo y condiciones meteorológicas, se emplean en este tipo de estabilización betunes fluidificados de viscosidad media, emulsiones bituminosas de rotura lenta y aceites pesados. El mezclado suele ejecutarse “in situ”, agregando agua al suelo para facilitar la mezcla de todos los componentes, aunque también se podría realizar en central. La mezcla debe realizarse de tal forma, y a la velocidad precisa para conseguir un material homogéneo y exento de concentraciones de ligante. Tras la colocación, debe compactarse la mezcla adecuadamente en el tajo.

Esta técnica de estabilización de suelos se encontraba en el artículo 511 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes hasta la entrada en vigor de la O.C. 297/88 que lo suprime. La justificación dada era la de una unidad de obra de escaso empleo, dejando su regulación a los pliegos de prescripciones técnicas particulares. La Orden FOM 891/2004 lo derogó definitivamente este artículo.

Resulta de interés el uso de la espuma de betún (“foamed bitumen”) en la estabilización de suelos. Se trata de una técnica también utilizada en el reciclado de pavimentos “in situ” o en la construcción de mezclas bituminosas en capas de base. El betún espumado se consigue inyectando una pequeña cantidad de agua fría (1 a 2% del peso del asfalto) y aire comprimido a una masa de betún caliente (160º C – 180º C), dentro de una cámara de expansión, generando espuma (Thenoux y Jamet, 2002). Se trata de una técnica relativamente nueva en su uso que permite producir mezclas asfálticas de un modo muy diferente a los sistemas tradicionales.

A continuación os dejo una conferencia sobre estabilización de suelos con emulsiones asfálticas del grupo TDM.

Os dejo a continuación un vídeo de una estabilización usando betún y cemento.

 

También os dejo una conferencia sobre estabilización de asfalto espumado de Sergio Serment.

Referencias:

GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

THENOUX, G.; JAMET, A. (2002). Tecnología del asfalto espumado. Revista Ingeniería de Construcción, 17(2):84.92.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con cal

Figura 1. Estabilizadora de suelos WR 250 de Wirtgen. http://caltek.com.co/tratamiento-de-suelos-con-cal/

Los trabajos de construcción se ven dificultados por la presencia de arcilla y un alto contenido de agua en un suelo. Una alternativa a la sustitución del suelo es la estabilización mediante cal. El efecto estabilizador de la cal sobre el suelo se obtiene mezclándolo y compactándolo con cal aérea (viva o apagada) y agua. Los suelos más adecuados son los de granulometría fina y notable plasticidad. Se emplea cal con una riqueza en CaO superior al 90%. Dependiendo del caso, se agrega un 4-7 % de cal apagada o del 2-5 % de cal viva sobre el peso seco del suelo. Hay que proteger a los operarios si se emplea la cal viva, evitando el contacto con la piel. La mezcla se puede realizar “in situ” (Figura 1) o en central. Algunos autores (Bouzá, 2003) diferencian entre la mejora y la estabilización de un suelo con cal en función de la ganancia mínima de resistencia a compresión simple sobre el valor inicial del suelo de 350 kPa.

La cal viva (óxido de calcio) seca de forma efectiva la humedad del suelo por hidratación y evaporación, al reaccionar de forma exotérmica. Se puede bajar entre un 2% y un 5% la humedad en función de la cal añadida y las condiciones del suelo. Este proceso es inmediato tras adicional la cal. Otro efecto inmediato es una reacción rápida de floculación e intercambio iónico que modifica la granulometría, la textura y la compacidad del suelo, así como la propiedad de retener el agua. A continuación, se forman nuevos productos químicos mediante una reacción muy lenta de tipo puzolánico, elevándose el pH del suelo a valores en torno al 12,5. La sílice y la alúmina del suelo se combinan con la cal en presencia de agua para formar silicatos y aluminatos cálcicos insolubles, lo que supone una mejora de las características resistentes, así como una mayor estabilidad frente a las heladas.

El proceso de ejecución “in situ” pasa por la distribución uniforme de la cal viva o apagada mediante equipos mecánicos con la dosificación fijada de dos formas posibles (Cabrera et al., 2012):

  • Por vía seca, extendiendo previamente la cal en forma de polvo o granes sobre la superficie de trabajo, antes de mezclarla con el suelo.
  • Por vía húmeda, en forma de lechada de cal hidratada o apagada elaborada previamente por equipos mecánicos.

Estos tratamientos se utilizan cuando es imposible disponer de materiales alternativos, pues su coste puede ser limitante en caso contrario. Su uso habitual es en capas de subbase y base para pavimentos de viales y carreteras, infraestructuras de ferrocarriles y pistas aeroportuarias para aumentar su capacidad portante y reducir su susceptibilidad al agua de suelos arcillosos. Los suelos a tratar con cal no contendrán materia orgánica o vegetal, ni elevados contenidos de sulfatos solubles. En el caso de subbases y bases de firmes, el suelo antes del tratamiento no contendrá partículas de tamaño superior a 80 mm o a la mitad del espesor de la tongada compactada. Además, el rechazo del tamiz 0,080 UNE será inferior al 85% en peso. La efectividad del tratamiento depende del nivel de arcilla presente (al menos, del 7%) y de su capacidad para reaccionar.

La estabilización con cal aumenta tanto el límite líquido como el plástico, así como muy ligeramente su índice de plasticidad en suelos con IP<15. Sin embargo, reduce el índice plástico en los suelos de plasticidad media-alta (IP>15), desactivando total o parcialmente la actividad de las arcillas, consiguiendo de esta forma una menor susceptibilidad al agua. Asimismo, permite densificar suelos con una humedad natural elevada al incrementar la humedad óptima de compactación. No obstante, la estabilización con cal disminuye la densidad máxima Proctor del suelo original. Como contrapartida, se incrementa el esfuerzo cortante con el porcentaje de cal, el tiempo transcurrido, la temperatura de curado y la disgregación del suelo durante la ejecución.

El suelo se desmenuza fácilmente y se vuelve granular con la cal. El aumento del límite plástico y de la humedad óptima de compactación facilitan su puesta en obra. El mezclado se realiza habitualmente en dos etapas, con un tiempo de reacción intermedio de 1 a 2 días. Los equipos modernos de mezclado “in situ” disponen de un mezclador situado en la parte central de la máquina (Figura 2). Esta cámara de mezclado puede tener unas barras de impacto en su zona delantera para disgregar las partículas gruesas, y una o dos compuertas de apertura regulable, y un sistema de difusores para la distribución del agua, lechada o aditivos de líquidos.

Figura 2. Estabilización “in situ” mediante un rotor de fresado y mezcla. https://www.wirtgen-group.com/es-bo/aplicaciones/obras-de-movimiento-de-tierras/estabilizacion/

Los suelos granulares suelen estabilizarse con cemento, pero se puede usar cal, sobre todo si se añaden cenizas volantes. A largo plazo, estas cenizas forman materiales cementantes. Las dosis de cal y cenizas oscilan entre el 3-5 % y el 10-20 %, respectivamente.

En el artículo 512 Suelos estabilizados in situ se establecen las especificaciones para el tratamiento de suelos con cal en el ámbito español de las carreteras. Los suelos estabilizados in situ S-EST1 y S-EST2 se pueden conseguir con cal o con cemento. El S-EST3 se obtiene solo con cemento.

Os dejo a continuación las recomendaciones de la Junta de Andalucía para los pliegos de especificaciones técnicas generales para el tratamiento de los suelos con cal.

Descargar (PDF, 384KB)

Os dejo un vídeo sobre la estabilización de suelos por la vía húmeda de la Asociación Antera.

Podéis ver a continuación varios vídeos donde se puede ver cómo se ejecuta la estabilización con cal.

Referencias:

BAUZÁ, J.D. (2003). Estabilización de suelos con cal. Mezclas con cemento en las infraestructuras del transporte, Madrid, 30 de enero, 37 pp.

CABRERA, F.; NAVARRO, J.J.; ESTAIRE, J.; RUIZ, M.S. (2012). Nuevas prescripciones de estabilización de suelos con cal para rellenos de terraplén en líneas de alta velocidad de ADIF. Revista Vía Libre – Técnica, 5, pp. 1-9.

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La estabilización de suelos

Figura 1. Suelo mejorado con cemento. https://www.360enconcreto.com/blog/detalle/caracteristicas-del-suelo-cemento-que-y-para-que

No siempre se encuentra el suelo adecuado que garantice la estabilidad y durabilidad de una explanada. Si se une a ello la creciente importancia medioambiental y la presión social por minimizar la apertura de nuevos préstamos y vertederos necesarios para el movimiento de tierras de una infraestructura, es evidente el esfuerzo necesario en utilizar materiales calificados como tolerables, marginales e incluso inadecuados. La estabilización permite reemplazar un suelo de baja calidad por otro estabilizado y mejorado. Se trata de una de las técnicas más antiguas y utilizadas en bases y subbases para uso vial. No obstante, el espesor de la capa del suelo a tratar es relativamente pequeño, por lo que algunos autores no la consideran como una técnica de mejora de terrenos.

La estabilización de un suelo mejora o controla su estabilidad volumétrica, aumenta su resistencia y el módulo esfuerzo-deformación, mejora su permeabilidad y durabilidad y reduce su susceptibilidad al agua. Se requieren ensayos de laboratorio y pruebas de campo para evaluar el rendimiento de la técnica. Se aprovechan los suelos de baja calidad, evitando su extracción y transporte a vertedero, aumenta su resistencia a la erosión, a la helada y otros agentes climáticos, permite la circulación por terrenos impracticables y obtiene una plataforma estable de apoyo del firme de infraestructuras lineales que colabore estructuralmente con el mismo.

Figura 2. Maquinaria para la estabilización de suelos. Fuente: M. López-Bachiller

La compactación y el drenaje del agua son los procedimientos más sencillos de estabilización. Asimismo, se puede mezclar dos o más suelos para obtener un suelo de mejor granulometría, plasticidad o grado de permeabilidad. También se logra mediante aditivos que actúan física o químicamente sobre las propiedades del suelo. Los más utilizados son el cemento y la cal, pero también se usan cenizas volantes, escorias granuladas, puzolanas, ligantes hidrocarbonados fluidos, cloruro cálcico, cloruro potásico, etc. Por tanto, la estabilización puede ser mecánica o química.

La estabilización mecánica se emplea en las explanadas de carreteras mediante compactación o por mezcla del suelo existente con otro de aportación. Por ejemplo, en presencia de un suelo granular sin finos se agregaría otro con finos y cierta plasticidad para conseguir una mezcla de mayor cohesión más fácil de compactar y menos permeable.

El tipo de suelo, el porcentaje de aditivo y la ejecución de la mezcla influyen en el grado de estabilización química. Se denominan suelos mejorados cuando se añaden pequeñas cantidades de aditivo para mejorar ligeramente el suelo. No obstante, ciertos suelos de buena granulometría y pequeña plasticidad mejoran considerablemente con porcentajes mínimos de aditivo.

La estabilización química puede realizarse “in situ” o bien realizarse la mezcla en central. Asimismo, en función de la profundidad del tratamiento, la estabilización puede considerarse como un método de mezcla profunda (“deep mixing method”) o una estabilización en masa (“mass stabilization”). La mezcla profunda de suelos podría clasificarse también como una técnica de mejora por inclusiones rígidas. También podrían incluirse aquí las mezclas de suelos realizadas mediante inyecciones o mediante jet grouting. También es posible dividir la estabilización de suelos en técnicas de mezcla húmeda (“wet soil mixing”), por ejemplo, en el caso de lechadas de cemento, y mezcla seca (“dry soil mixing”), como es el caso de las mezclas con cal y cemento.

Os dejo un enlace al “Manual de estabilización de suelos con cemento o cal” que creo os puede ser de ayuda. También os aconsejo acudir a la página web de ANTER (Asociación Nacional Técnica de Suelos y Reciclado de Firmes).

Aquí os he grabado un pequeño vídeo introductorio a esta técnica.

Asimismo, os dejo algunos vídeos al respecto para que veáis el procedimiento constructivo. Espero que os gusten.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.