UPV



Resultados de la búsqueda By Etiquetas: cimentacion


Requisitos de los cimientos de una cimbra

By Leonard G. [CC0], from Wikimedia Commons

En una entrada anterior dimos recomendaciones acerca de la cimentación de una cimbra en el caso particular de la construcción de un puente losa. Ahora vamos a explicar brevemente los requisitos básicos de cualquier tipo de cimbra atendiendo a lo dispuesto en la norma UNE-EN 12812:2008 “Cimbras. Requisitos de comportamiento y diseño estructural”.

Una cimbra, tal y como dispone dicha norma, se utiliza normalmente para soportar las cargas producidas al verter hormigón fresco durante la construcción de estructuras permanentes hasta que se alcance la capacidad de soportar la carga suficientemente, también sirve para absorber las cargas de elementos estructurales, instalaciones y equipos utilizados durante la construcción, el mantenimiento, la reforma o el derribo de las estructuras y, adicionalmente, proporcionan sustento para el almacenamiento temporal de materiales de construcción, elementos estructurales y equipos.

Como puede verse, la cimbra es una estructura que debe transmitir las cargas al terreno o a otra subestructura. Puede ser una subestructura habilitada a tal efecto, la superficie del terreno existente (por ejemplo, roca), una superficie parcialmente excavada y preparada (por ejemplo, tierra), una estructura ya existente o bien un cimiento propiamente dicho.

Apoyo sin ninguna incrustación en el terreno

El cimiento de una cimbra se puede apoyar directamente sobre el terreno, siempre que se retire la capa superficial del suelo. En este caso se deben cumplir las siguientes condiciones:

  • Los cimientos deben resistir los arrastres por aguas superficiales o subterráneas, al menos, durante la vida de la cimbra. Para ello se puede ejecutar un drenaje o bien se puede proteger dicha cimentación con una capa de hormigón.
  • No deben existir heladas que afecten a terrenos permeables que sean superficie de apoyo, al menos, durante la vida de la cimbra.
  • La superficie de apoyo no debe superar el 8% de pendiente. En otro caso, se debe realizar un macizo de apoyo o cualquier otra solución que permita disipar la componente de fuerza en el terreno.
  • En terrenos cohesivos, y cuando la distancia al borde es grande, se debe disponer de un drenaje por debajo de la base de cimentación.
  • En el caso de terrenos no cohesivos, se debe asegurar que no sea probable que el nivel freático se eleve a menos de un metro de la parte inferior de la estructura. La razón es mantener el asentamiento en un valor suficientemente bajo.
  • Se debe verificar la capacidad de esfuerzo cortante lateral.

 

Apoyo sobre una estructura permanente existente

En este caso hay que verificar la capacidad de la estructura permanente para soportar las cargas aplicadas de la cimbra.

Elementos rectangulares apilados

Se pueden utilizar elementos de madera rectangulares u otros elementos comparables para el apoyo en la ejecución de las torres portantes, así como para el ajuste de la altura de la base de la construcción en combinación con la cimentación. Estos elementos se deben colocar transversalmente, ampliándose el área base con cada capa desde la parte superior a la inferior. Asimismo, se debe comprobar que el apoyo de la ejecución para las torres portantes debe cubrir toda la sección transversal de la torre (Figura 1).

Figura 1. Apoyo de una torre portante mediante elementos apilados. AENOR (2008)

El extremo superior de los elementos apilados debe diseñarse como un apoyo horizontal arriostrado, o bien, se debe estabilizar el punto de apoyo en cualquier dirección horizontal mediante anclajes horizontales. Este elemento apilado se considera como un punto de apoyo horizontal arriostrado si se cumple (Figura 2):

Figura 2. Elemento apilado para ajuste de la altura. AENOR (2008)

Torres de carga

Se requiere asegurar la forma de la sección de la estructura de apoyo mediante anclajes o planos rigidizados, en la parte superior e inferior de la torre. Se puede sustituir dichos anclajes por el propio encofrado o por la cimentación en el caso de que la torre esté bien conectada a dichos elementos.

Referencias.

AENOR (2008). Norma Española UNE-EN 12812 Cimbras. Requisitos de comportamiento y diseño general.

 

1 agosto, 2018
 
|   Etiquetas: ,  ,  |  

Cimentación de la cimbra de un puente losa

ama011

Detalle de las torres sobre los durmientes de madera y de la zahorra compactada. Imagen: V. Yepes.

Una cimbra no deja de ser una estructura que debe estar perfectamente apoyada sobre un terreno con suficiente capacidad portante que, además, minimice sus asientos diferenciales. Normalmente se suele exigir un mínimo de 0,10 MPa de tensión admisible al terreno que sirve de apoyo a una cimbra tubular. Para ello se compacta el suelo y se le suele mejorar con unos 30 cm de un material granular (grava-cemento o zahorras), para facilitar el drenaje en caso de lluvias. También se deben colocar durmientes de madera paralelos a la directriz del tablero para apoyar los pies de las torres. Este elemento sirve para repartir las cargas y reducir la tensión transmitida.

ama017

Cimentación provisional para soportar las torres de una cimbra diáfana. Imagen: V. Yepes

En el caso de terrenos flojos o cuando las cargas son elevadas, se puede sustituir el terreno o, incluso, hay que recurrir a cimentaciones auxiliares. La cimbra también se debe estabilizar también en la proximidad de los terraplenes laterales, próximos a los estribos. Para ello se escalona el terreno, ejecutando unos pequeños muros de hormigón para reforzar la seguridad de los apoyos.

ama009

Escalonamiento con pequeños muros de hormigón junto al estribo. Imagen: V. Yepes

Un aspecto importante es la disposición de cimbras sobre ríos o torrenteras. Una lluvia torrencial imprevista puede originar arrastres y avenidas que pueden erosionar el apoyo de las cimbras, ocasionando su desplome. Este incidente es especialmente grave cuando se ha vertido el hormigón y no se ha alcanzado la resistencia suficiente para pretensar el tablero de forma que soporte su propio peso. Para prevenir esta circunstancia una buena práctica consiste en cimentar la cimbra sobre una losa de hormigón protegida lateralmente mediante escollera. Otra buena práctica consiste en prever alguna zanja aguas arriba para dar salida al agua con una zanja lateral que atraviese la planta del tablero y vierta aguas abajo.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

27 febrero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Cimentación mediante cajones de aire comprimido

Disposición general de un cajón neumático (adaptado de Wilson y Sully, 1949)

Un cajón es una estructura que hundida a través  del terreno o del agua permite colocar la cimentación a la profundidad de proyecto, y que posteriormente pasa a formar parte de la estructura definitiva. Estos cajones pueden ser de fondo abierto o de fondo cerrado (ver cajones flotantes). Nos centraremos en este post en los cajones de fondo abierto en las que existe una cámara de trabajo sometida a una presión superior a la atmosférica para impedir que el agua entre en la excavación. Se trata de las cimentaciones mediante cajones neumáticos o de aire comprimido.

Alguien puede preguntarse a qué viene un post sobre una técnica que tiene riesgos evidentes de ejecución y que ya en un artículo de Presa y Eraso (1970) nos avisaba que era una técnica en trance de desaparecer. Hoy día existen procedimientos (por ejemplo pilotes de gran diámetro) que son más sencillos de construir, suficientemente seguros, rápidos y económicos que permiten evitar riesgos innecesarios, especialmente los procesos de compresión y descompresión que requieren tiempos suficientes, tal y como ocurre en los trabajos realizados por los buzos o submarinistas. Pues bien, razones históricas y docentes nos llevan (más…)

9 septiembre, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

¿Harías este examen de Procedimientos de Construcción?

Descargar (PDF, 42KB)

20 febrero, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Pilotes CPI-7: perforado a rotación sin sostenimiento

Ejecución de un pilote CPI-7. www.tecnoiberica.es

Según la NTE, se denomina CPI-7 al pilote perforado a rotación y hormigonado “in situ”, en los que debido a las características del terreno, no precisa el sostenimiento de las paredes. Es un pilote rápido de ejecutar y económico, idóneo cuando el terreno es estable durante la perforación. Los diámetros habituales oscilan entre 450 y 1500 mm, con profundidades de hasta 40 m. El tipo de terreno decide la forma de excavación. En el caso de terrenos blandos y medios, la excavación se realiza mediante barrenas de hélice cortas. En cambio, con terrenos más duros deberíamos incluir en la barrena de dientes puntas de widia. En terrenos muy competentes y roca la perforación pasa por una corona circular con puntas de widia. Una vez alcanza la profundidad objetivo se realiza la limpieza del fondo de la excavación mediante el uso de un cazo (“bucket”).

www.tecnoiberica.es

Posteriormente al limpiado del fondo se procede a introducir la armadura de acero con la ayuda de un equipo auxiliar (grúa). Para garantizar el recubrimiento mínimo necesario de la misma, se levanta 20 cm sobre el fondo de la excavación y se colocan separadores para su correcto centrado.

Después de colocar la armadura se comienza con el hormigonado. Se utiliza un tubo “Tremie” para verter el hormigón en la perforación, de forma que se eviten segregaciones y exudaciones. Este tubo se introduce por dentro de la armadura hasta alcanzar el fondo de la perforación. A continuación se comienza a bombear el hormigón que debe ser homogéneo y de consistencia fluida, con conos de Abrams de 15-16 cm, recomendando dosificaciones de hormigón de 350 kg de cemento por m3 de hormigón y la utilización de áridos no superiores a 20 mm.

Conforme avanza la fase de hormigonado se va subiendo simultáneamente el tubo Tremie, pero teniendo la precaución de mantenerlo siempre unos dos metros introducido en el hormigón fresco. Cuando el hormigón alcanza la cota de la rasante del terreno se concluye con el hormigonado. Por último se procede al descabezado de los pilotes.

Os dejo una animación que describe el procedimiento.

 

También podéis ver a continuación un vídeo Polimedia donde se explica la construcción de este tipo de pilotes.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9. (link)

 

18 enero, 2016
 
|   Etiquetas: ,  ,  ,  |  

Hinca de pilotes o tablestacas por inyección de agua a presión

Pilote de hormigón armado hincado con lanza de agua a presión (FHWA)

Pilote de hormigón armado hincado con lanza de agua a presión (FHWA)

La hinca de elementos en suelos granulares compactos como las arenas, especialmente en terrenos secos, presentan serias dificultades que pueden resolverse mediante la inyección de agua a presión en la punta del pilote o la tablestaca o en alojamientos previamente preparados en sus caras. La presión del agua, de unos 0,4 a 4 MPa, debe ser apropiada al tipo de terreno y al elemento a hincar, con un caudal de alimentación permanente del orden de 72 a 900 m3/h.

Este procedimiento, aunque podría ser suficiente para la hinca, lo usual es que se combine con otros sistemas de tipo dinámico, especialmente la vibración. La hinca con chorro de agua es muy recomendable en zonas donde el rechazo se presente al 100%, como son los terrenos arenosos, sin embargo, en suelos arcillosos, la eficacia de la inyección de agua es prácticamente nula. En terrenos granulares con gravas gruesas y bolos, la inyección de agua puede no movilizarlas, y por tanto, también el efecto es bajo. Con todo, hay que prever las consecuencias que puede tener en el entorno de la hinca por la pérdida de cohesión que tendrá el terreno. Este procedimiento no se recomienda en aquellos pilotes que vayan a trabajar por fuste o que soporten cargas horizontales importantes, debido justamente al aflojamiento del terreno.

Las normas obligan a que la lanza de agua se quede entre 1 y 4 m por encima de la profundidad prevista, puesto que el suelo se afloja. La hinca se terminará, por tanto, con un procedimiento ordinario. Esta prescripción es muy importante en el caso de los pilotes que trabajen por punta. También se suspenderán los trabajos si el pilote empieza a torcerse debido a una perturbación excesiva del terreno.

Dejamos a continuación un vídeo para ilustrar el procedimiento constructivo.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9. (link)

21 septiembre, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Pilote “monotubo” Unión

MonotubeEl pilote “monotubo” Unión es apropiado para pequeños trabajos donde no se requiera un equipo especial de hinca, como es un mandril. Se trata de un tubo de acero de sección cónica y  estriada de pequeño espesor que se hinca en el terreno sin ayuda de un núcleo o mandril. El estriado le permite soportar los esfuerzos de hinca sin pandeo. Presentan un diámetro de 20 cm en punta y de 30 a 45 cm en cabeza. Se emplea en longitud hasta de 37 m y cargas de 300 a 600 kN. Son especialmente apropiados para trabajos pequeños, porque no requieren equipos especiales de hinca, como es el mandril.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9. (link)

20 septiembre, 2015
 
|   Etiquetas: ,  ,  ,  |  

Pilote “button-bottom”

Pilote entubado “button-bottom” (Western Foundation Corporation Viginia, USA)

Pilote entubado “button-bottom” (Western Foundation Corporation Viginia, USA)

Este tipo de pilote emplea un tubo metálico de unos 35 cm de diámetro que se hinca en el terreno hasta el rechazo. Presenta en el extremo del tubo una punta de hormigón prefabricado (button) de diámetro algo mayor que queda perdida. La forma y resistencia de esta punta permite atravesar estratos de gran resistencia. La chapa ondulada que ha de proteger al hormigón se hace descender por el interior del tubo hasta su unión con el fondo (bottom) y a continuación se hormigona mientras se extrae la entubación de hinca sin peligro gracias a la fijación de la chapa interior. Esta chapa corrugada en principio favorecería la resistencia por fuste del pilote, sin embargo, el hueco que se forma alrededor de la misma cuando se recupera el tubo de hinca no favorece el rozamiento, por lo que es mejor considerar que trabaja por punta. Su longitud alcanza unos 20 – 30 m, soportando cargas de unos 500 kN o mayores. Este tipo de pilote es patente de Western.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9. (link)

19 septiembre, 2015
 
|   Etiquetas: ,  ,  ,  |  

Pilote de extracción con fluidos estabilizadores

CPI-6Los pilotes perforados sin entubación con fluidos estabilizadores, denominados CPI-6 en la nomenclatura de las NTE-1977, permiten excavar en terrenos inestables o con nivel freático alto, debido a las propiedades expansivas y tixotrópicas de los fluidos empleados, que ayudan a contener las paredes. Estos fluidos presentan propiedades tixotrópicas en la bentonita y propiedades iónicas en los polímeros.

Los fluidos estabilizadores pueden ser utilizados para estabilizar la excavación en toda su altura o bien una parte. Durante la construcción del pilote el nivel de lodos debe mantenerse en un nivel apropiado, siempre por encima del nivel freático al menos de 1,0 a 1,5 m. Este procedimiento es aplicable de preferencia en terrenos finos sin estratos granulares gruesos libres de matriz fina o grandes bloques.

Una vez acabada la perforación, se introduce la armadura y se hormigona utilizando la tubería tremie hasta el fondo de la perforación. La tubería se va subiendo a medida que se hormigona, procurando que su boca inferior esté embebida un mínimo de 4 m dentro de la columna ya hormigonada para evitar posibles cortes durante el hormigonado. La consistencia del hormigón debe ser fluida. Durante el hormigonado deben controlarse nuevamente las características de los lodos de bentonita para evitar contaminaciones en el hormigón. Los diámetros utilizados en este tipo son, según la NTE, de 45 a 125 cm, aunque la maquinaria actual permite pilotes de diámetros mayores.

Se pueden alcanzar profundidades superiores a 50 m, en función de las características del Kelly telescópico que sostiene la herramienta de perforación. Sin embargo hay que tener en cuenta la complicación que supone el uso de lodos bentoníticos a medida que aumenta la profundidad.

Su uso es habitual como pilotaje trabajando por punta, apoyado en roca o capas duras de terreno. Cuando se atreviesen capas blandas que se mantengan sin desprendimientos por efecto de los lodos.

Fases de ejecución:

  1. Excavación con cuchara y vertido de lodo en la excavación para extracción de la tierra.
  2. Cambio de lodo contaminado y limpieza del fondo del pilote
  3. Introducción de las armaduras.
  4. Hormigonado desde el fondo mediante tubo Tremie y recuperación del lodo.
  5. Pilote terminado.

 

Fases CPI-6

Para garantizar la estabilidad de la perforación, el nivel del lodo debe estar siempre próximo al nivel de coronación del murete-guía, debiéndose mantener constante, por lo que es preciso aportar lodos a medida que se excava el terreno. Además, se precisa una central de tratamiento de lodos que permita el control de la calidad de los lodos (mediante su viscosidad y contenido en finos) y la regeneración de los lodos contaminados.

Imagen1

Para la perforación y extracción de tierras se utilizan cucharas, barrenas cortas o buckets. Los restos de la excavación se van depositando en el fondo de la misma, por lo que es fundamental la limpieza de la punta del pilote. Para su limpieza se utilizan bombas de fondo que permiten la extracción del lodo contaminado y la incorporación de lodo regenerado. Pueden emplearse para ello sistemas de circulación directa que introducen lodos frescos por la punta que desplazan al lodo contaminado, que sale por la cabeza, o sistemas de circulación inversa que lo hacen aspirando el fango contaminado del fondo y alimentan con fango fresco por la cabeza.

A continuación os dejo un vídeo explicativo de la construcción de este tipo de pilotes.

 

5 febrero, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Reparación y refuerzo de cimentaciones en rehabilitación de edificios

Para empezar este 2015, creo que es bueno acudir a compañeros que están trabajando de forma muy eficaz en nuestra profesión en tiempos de crisis. Es el caso de Juan José Rosas, que nos ofrece una presentación sobre la reparación y refuerzo de las cimentaciones en los edificios, donde su rehabilitación es uno de los pocos nichos de mercado en el sector de la construcción que es capaz de capear la crisis. Espero que os guste.

1 enero, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia