¿Qué es el Análisis del Ciclo de Vida?

Nuestro grupo de investigación está en estos momentos muy centrado en aspectos relacionados con el análisis del ciclo de vida y con la sostenibilidad de las infraestructuras. Proyectos como BRIDLIFE y DIMALIFE inciden especialmente es estos temas. He considerado, por tanto, de gran interés para el lector, resumir brevemente el concepto, los tipos, algo de historia y proporcionar unas pequeñas referencias al respecto. Espero que os sean de interés.

El Análisis del Ciclo de Vida clásico constituye una metodología objetiva que trata de evaluar las cargas ambientales asociadas a un producto, proceso o actividad, identificando y cuantificando el uso de materia y energía además de las emisiones al entorno (Olivera et al., 2016).

Sus orígenes se remontan a finales de los años 60. Dos investigadores del Instituto de Investigación del Medio Oeste (MRI), Robert Hunt y William Franklin empezaron a trabajar en una técnica que permitiese cuantificar la energía demandada y los recursos, así como las emisiones de gases de efecto invernadero (GEI) por parte de las industrias (Trusty y Deru, 2005). Esta técnica paso a llamarse como Análisis de Perfil Ambiental y de Recursos (REPA) y se utilizó por primera vez en 1969 por el MRI junto a la compañía Coca-Cola para analizar y seleccionar los materiales más ecológicos y como tratarlos en su final de vida (Gerilla et al., 2007).

La primera expansión del uso de esta tecnología tuvo lugar durante la crisis energética de los años 70, para estudiar el consumo energético de productos de embalaje de plástico o cartón. A finales de los 80’s y principios de los 90’s tuvo de nuevo un gran alcance como herramienta de marketing (Owens, 1996).

Con los avances metodológicos de la herramienta y la proliferación de resultados muy dispares en los diferentes estudios realizados, se decidió llevar a cabo una armonización del ACV. Con dicha finalidad aparecieron diversas directrices, destacando la holandesa y la nórdica, que también incluían recomendaciones contradictorias.

A inicios de los 90’s, la Sociedad de Toxicología Ambiental y Química (SETAC) alcanzó a un consenso mediante grupos consultivos de América del Norte y Europa y elaboraron el “Código de práctica para la evaluación del ciclo de vida”. Paralelamente, surgieron otras iniciativas como la Guía LCA Z-760 de la Asociación de Estandarización Canadiense.

Finalmente, a finales de los años 90, surgieron los procesos de estandarización más reconocidos por parte de la Organización Internacional de Normalización (ISO) (Russell et al., 2005).

La ISO emitió los estándares internacionales más relevantes en 1997, definiendo el ACV como “un método para resumir y evaluar la carga ambiental de un producto (o servicio) en todo el ciclo de vida, y el impacto o influencia potencial sobre el medio ambiente” en la serie de normas ISO 14040 (AENOR, 2006). Esta metodología es compatible con la evaluación de los impactos socioeconómicos, puesto que comparten ciertos elementos que aportan datos comparativos muy útiles para la toma de decisiones frente a nuevos proyectos o acciones de mejora.

De este modo quedan las tres dimensiones del análisis del ciclo de vida:

  • Análisis del Ciclo de Vida Ambiental (ACV-A): Metodología ya presentada que contempla la carga ambiental producida por un producto o servicio durante todo el ciclo de vida.
  • Coste del Ciclo de Vida (CCV): Este análisis se centra en la etapa de diseño de un producto, analizando los costes directos y los beneficios de las actividades económicas, como los costes para la prevención de la contaminación, los costes de las materias primas, los impuestos y los intereses sobre el capital entre otros, en resumen, es una recopilación y evaluación de todos los costes relacionados con un producto a lo largo de todo su ciclo de vida.
  • Análisis del Ciclo de Vida Social (ACV-S): Se trata de una herramienta de evaluación de impactos sociales cuyo objetivo es analizar los aspectos sociales y socio-económicos de los productos y sus impactos potenciales (positivos y negativos) durante todo el ciclo de vida.

 

Como combinación de las tres tipologías, se plantea el Análisis del Ciclo de Vida de la Sostenibilidad (ACV-SOS) realizando un análisis integrado de cualquier producto o servicio.

La Comisión Europea planteó una guía de ruta a esta situación, por medio del proyecto CALCAS (Coordination for innovation in Life Cycle for Sustainability) desde el 2006, con el fin de organizar las distintas modalidades que han surgido mediante una futura norma ISO ACV, que englobara un análisis multicriterio sobre sostenibilidad (van der Giesen et al., 2013).

Aunque la metodología de las tres dimensiones del ACV está basada en la norma ISO 14040, esta no tiene dentro de su alcance el estudio del impacto económico y social, por lo que es necesario combinarla con otras herramientas para profundizar ese análisis. Os dejo a continuación una serie de referencias bibliográficas por si os interesa profundizar más en el tema.

Referencias

  • AENOR (2006). ISO 14040:2006. Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia. Madrid.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GERILLA, G. P.; TEKNOMO, K.; HOKAO, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment, 42(7), 2778–2784.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 (link).
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196:698-713. https://doi.org/10.1016/j.jclepro.2018.06.110
  • OLIVERA, A.; CRISTOBAL, S.; SAIZAR, C. (2016). Análisis de ciclo de vida ambiental, económico y social. INNOTEC, 7, 20–27.
  • OWENS, J. W. (1996). LCA Methodology LCA Impact Assessment Categories Technical Feasibility and Accuracy. International Journal of Life Cycle Assessment, 1(3), 151–158.
  • PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420.  https://doi.org/10.1016/j.jclepro.2018.04.268
  • RUSSELL, A.; EKVALL, T.; BAUMANN, H. (2005). Life cycle assessment – Introduction and overview. Journal of Cleaner Production, 13(13–14), 1207–1210.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure.Journal of Construction Engineering and Management, 142(5):  05015020. DOI: 10.1061/(ASCE)CO.1943-7862.0001099.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI: 10.1016/j.jclepro.2018.03.022.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 
  • TRUSTY, W.; DERU, M. (2005). The U.S. LCI database project and its role in Life Cycle Assessment. Building Design and Construction, 1, 26–29.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La captura de dióxido de carbono: la carbonatación del hormigón

By MADe [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5 (https://creativecommons.org/licenses/by-sa/2.5)], from Wikimedia Commons

En posts anteriores ya hemos tratado el tema del dióxido de carbono y el hormigón, en especial cuando cuantificábamos la cantidad de  CO2 que se emite a la atmósfera con la fabricación del hormigón o bien cuando tratábamos sobre la durabilidad del hormigón. En este post vamos a realizar un pequeño análisis de las investigaciones relacionadas con la carbonatación del hormigón a lo largo del ciclo de vida de una estructura (Yepes, 2017).

Son pocos los estudios sobre el ciclo de vida de estructuras de hormigón que consideran la carbonatación. Si se ignora la absorción de CO2 se pueden sobrestimar las emisiones en un 13-48%, dependiendo del tipo de cemento y la aplicación del hormigón reciclado durante la vida secundaria (Collins, 2010). Este proceso de carbonatación se denomina muchas veces recarbonatación, puesto que el producto final es el carbonato cálcico, que es químicamente el mismo componente que se utilizó como ingrediente primario para la fabricación del cemento. La carbonatación del hormigón se puede evaluar mediante modelos teóricos (Papadakis et al., 1991), modelos experimentales (Jiang et al., 2000) y modelos basados en la teoría de la difusión y en pruebas reales (Houst y Wittmann, 2002).

El coeficiente de carbonatación del hormigón depende de la porosidad y de la permeabilidad del recubrimiento de las armaduras, así como de las condiciones ambientales a las que esté expuesto (Bertolini et al., 2004). Cuando reducimos la relación agua/cemento, dificultamos la difusión de CO2 en el hormigón. El hecho de que la velocidad de carbonatación sea mayor en hormigones protegidos de la intemperie se debe al bloqueo parcial de los poros por efecto de la lluvia en el exterior no protegido.

Oxidación de las armaduras como limitante de la durabilidad del hormigón armado

Si se comparan ambas condiciones se obtienen grandes diferencias, mostrándose la gran influencia que tiene la humedad en la carbonatación (Galán et al., 2010). La cantidad necesaria de CO2 para bajar el pH hasta rangos casi neutros, en los que las armaduras dejan de estar protegidas, variará en función de la reserva alcalina que el cemento aporte al hormigón, la cual depende tanto del tipo como de la cantidad de cemento utilizado (Ho and Lewis, 1987; Kobayashi y Uno, 1989). Zornoza et al. (2009) señalaron que la capacidad del hormigón para fijar CO2 es proporcional a la alcalinidad de la pasta de cemento. Otro factor muy importante es el recubrimiento del acero, pues cuanto mayor sea, más tiempo tardará el CO2 en deteriorar la protección alcalina frente a la corrosión del acero. La EHE-08 (Fomento, 2008) calcula el coeficiente de carbonatación en función de la exposición a la lluvia, el aire ocluido, la resistencia del hormigón y el uso de adiciones.

Leber y Blakey (1956) estimaron los efectos de la carbonatación suponiendo que todo el CO2 absorbido reacciona con la cal para formar carbonato cálcico en morteros y en hormigón. La carbonatación del hormigón capta CO2 y compensa las emisiones de otras etapas del ciclo de vida. El tipo de cemento y el uso de hormigón reciclado influyen significativamente en la captura de CO2 (Collins, 2010). Flower y Sanjayan (2007) encontraron que la escoria de alto horno y la ceniza volante podrían reducir, respectivamente, las emisiones de CO2 del hormigón en un 22% y entre un 13% y un 15% en mezclas de hormigón habituales.

Pade y Guimaraes (2007), Collins (2010) y Dodoo et al. (2009) consideraron los modelos predictivos de la primera ley de difusión de Fick para estimar la captura de CO2. Esta captura depende del coeficiente de carbonatación, del tiempo, de la cantidad de cemento Portland por metro cúbico de hormigón, de la cantidad de contenido de CaO en el cemento Portland, de la proporción de CaO que puede ser carbonatada y de la superficie expuesta. Pade y Guimaraes (2007) analizaron la cantidad de hormigón que se recicla para uso secundario según el país y concluyeron que la trituración del hormigón tras su vida útil incrementa significativamente la carbonatación gracias a la mayor superficie expuesta. Aproximadamente dos tercios de las emisiones producidas en la calcinación para fabricar cemento se pueden capturar si se deja el hormigón triturado expuesto durante 30 años tras la finalización de su vida útil (Dodoo et al., 2009). De hecho, un 70% del CO2 liberado en la producción de cemento se recapturaría por el hormigón endurecido en 100 años (Börjesson y Gustavsson, 2000).

La durabilidad del hormigón armado puede disminuirse significativamente por los procesos de degradación de origen ambiental o funcional (Angst et al., 2009; Guzmán et al., 2011). En consecuencia, la reducción de la vida útil provoca una mayor cantidad de emisiones anuales. Además, contemplar la durabilidad también es fundamental en un buen diseño conceptual, en la gestión de calidad en la construcción y en un buen plan de mantenimiento. Así, Aïtcin (2000) señaló la importancia de considerar no solo el coste de 1 m3 de hormigón, sino el coste de 1 MPa o 1 año del ciclo de vida de una estructura. La carbonatación puede ayudar a reducir las emisiones totales de CO2 asociadas a la producción de hormigón. Sin embargo, este fenómeno hace perder la capa protectora alcalina que protege de la corrosión y, por tanto, determina la durabiliad de la estructura.

García-Segura et al. (2014) estudiaron el ciclo de vida de las emisiones de gases de efecto invernadero del hormigón elaborado con cemento con adiciones. Se evaluó la carbonatación durante la vida útil y tras la demolición, considerando que el óxido de calcio que no carbonate durante la etapa de uso lo puede hacer después de la demolición. Encontraron que la carbonatación durante la etapa de uso disminuye las emisiones totales en un 22% respecto a los hormigones con cemento Portland. Además, y esto es muy importante, el hormigón reciclado triturado y expuesto a la atmósfera garantiza una carbonatación completa y una enorme reducción de las emisiones de CO2.

Referencias:

Aïtcin, P.C. (2000). Cements of yesterday and today. Cement and Concrete Research, 30(9), 1349–1359.

Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. (2009). Critical chloride content in reinforced concrete — A review. Cement and Concrete Research, 39(12), 1122–1138.

Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R.B. (2004). Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Weinheim: Wiley-VCH.

Börjesson, P.; Gustavsson, L. (2000). Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives. Energy Policy, 28(9), 575–588.

Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.

Dodoo, A.; Gustavsson, L.; Sathre, R. (2009). Carbon implications of end-of-life management of building materials. Resources, Conservation and Recycling, 53(5), 276–286.

Flower, D.J.M.; Sanjayan, J.G. (2007). Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment, 12(5), 282–288.

Fomento, M. (2008). EHE-08: Code on structural concrete. Madrid, Spain: Ministerio de Fomento.

Galán, I.; Andrade, C.; Mora, P.; Sanjuan, M.A. (2010). Sequestration of CO2 by concrete carbonation. Environmental Science & Technology, 44(8), 3181–6.

García-Segura, T.; Yepes, V.; Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.

Guzmán, S.; Gálvez, J.C.; Sancho, J.M. (2011). Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement and Concrete Research, 41(8), 893–902.

Ho, D.; Lewis, R. (1987). Carbonation of concrete and its prediction. Cement and Concrete Research, 17(3), 489-504.

Houst, Y.F.; Wittmann, F. H. (2002). Depth profiles of carbonates formed during natural carbonation. Cement and Concrete Research, 32(12), 1923–1930.

Jiang, L.; Lin, B.; Cai, Y. (2000). A model for predicting carbonation of high-volume fly ash concrete. Cement and Concrete Research, 30(5), 699–702.

Kobayashi, K.; Uno, Y. (1989). Influence of alkali on carbonation of concrete, part I. Preliminary tests with mortar specimens. Cement and Concrete Research, 19(5), 821-826.

Leber, I.; Blakely, F.A. (1956). Some effects of carbon dioxide on mortars and concrete. Journal of American Concrete Institute, 53(9), 295–308.

Pade, C.; Guimaraes, M. (2007). The CO2 uptake of concrete in a 100 year perspective. Cement and Concrete Research, 37(9), 1348–1356.

Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N. (1991). Fundamental Modeling and Experimental Investigation of Concrete Carbonation. ACI Materials Journal, 88(4), 363–373.

Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.

Zornoza, E.; Payá, J.; Monzó, J.; Borrachero, M.V.; Garcés, P. (2009). The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Construction and Building Materials, 23(3),  1323–1328.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué entendemos por “Smart Construction”? ¿Una nueva moda?

http://constructioncitizen.com/blog/get-smart-construction-video/1510211

Se está poniendo de moda el concepto “inteligente” para nombrar todo tipo de cosas. Por ejemplo, “smart buildings“, “smart cities“, “smart beach“, “smart tourism destination“, “smart food“, etc. Como siempre, cada vez que se empieza a hacer viral un concepto, al final se acaba por difuminar y perder el sentido original de lo que se quería decir. Este tipo de modas ya han pasado por conceptos tan importantes como “calidad”, “sostenibilidad”, “innovación”, etc. Al final, aplicado a productos o servicios, se menoscaba el significado por culpa del marketing y con ello se quiere atraer al consumidor hacia lo “bueno”, “guay”, “saludable” o similares.

Espero que el término de “construcción inteligente” tenga algo más de recorrido y pueda suponer un punto de inflexión en nuestro sector. Este término presenta, como no podía ser de otra forma, numerosas interpretaciones y tantas más aplicaciones. Es un concepto que se asocia al diseño digital, a las tecnologías de la información y de la comunicación, la inteligencia artificial, al BIM, al Lean Construction, la prefabricación, los drones, la robotización y automatización, a la innovación y a la sostenibilidad, entre otros muchos conceptos.

Uno que me interesa mucho es la asociación con el de los nuevos métodos constructivos (término que incluye nuevos productos y nuevos procedimientos constructivos). Su objetivo es mejorar la eficiencia del negocio, la calidad, la satisfacción del cliente, el desempeño medioambiental, la sostenibilidad y la previsibilidad de los plazos de entrega. Por lo tanto, los métodos modernos de construcción son algo más que un enfoque particular en el producto. Involucran a la gente a buscar mejoras, a través de mejores procesos, en la entrega y ejecución de la construcción.

https://pixabay.com/es/sitio-de-construcci%C3%B3n-edificio-1205047/

Sin embargo, y este es un punto crucial, para que se pueda hablar de verdad de “construcción inteligente”, no solo vamos a necesitar incorporar las nuevas tecnologías, sino que también va a ser necesario elaborar un sistema que permita la participación de todas las partes implicadas en el proceso proyecto-construcción, alimentando de información de calidad a este sistema de forma que soporte la toma de decisiones mediante la inteligencia artificial. El BIM puede ser un buen punto de partida para ello, pero se hace necesario integrar la inteligencia colectiva de forma que, aunque se apoye el sistema de una rigurosa alimentación de datos en tiempo real, el decisor tome sus decisiones asumiendo la responsabilidad última de sus acciones.

Dejo abierto este tema por si alguno de mis estudiantes quieren realizar su Trabajo Fin de Máster, e incluso atreverse a la realización de una tesis doctoral sobre este tema.

Os voy a dejar algunos vídeos relacionados con el tema, algunos os gustarán más que otros, pero es una buena forma de acercarse al concepto de construcción inteligente.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo afectan los costes al mantenimiento de un puente cuando se consideran aspectos sociales?

https://www.ailladearousa.com

Pocas veces se incorporan en los proyectos de puentes actuales las variables sociales como factores determinantes de su diseño. Tampoco se dedica la atención suficiente al análisis del coste del ciclo de vida para evaluar la mejor alternativa posible de diseño. Considerar en nuestros proyectos este tipo de variables podría reducir, por ejemplo, en un 60% los costes de mantenimiento. También se constataría el hecho de que incrementar solamente 5 mm el recubrimiento de las armaduras de las estructuras de hormigón podría reducir el coste del mantenimiento en un 40%. Un ejemplo de la aplicación de este tipo de metodologías es la que nos acaban de publicar en la revista Sustainability. Allí se ha analizado el coste del ciclo de vida de las medidas de prevención aplicado a un puente de hormigón postesado expuesto al ataque de clorhídricos. Para ello se ha elegido el puente de la Isla de Arosa, en Galicia (España). Os dejo el artículo completo y la referencia.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 .

Descargar (PDF, 1.87MB)

La perspectiva del ciclo de vida de los puentes

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La sostenibilidad en el ámbito de la construcción

La Comisión Mundial sobre el Medio Ambiente y el Desarrollo “World Commission on Environment and Development” (WCED) propuso mantener a largo plazo los recursos necesarios para satisfacer las necesidades futuras (Butlin, 1989). Además, se señaló que para conseguir un desarrollo sostenible se debía mantener un equilibrio entre los pilares económicos, ambientales y sociales. Desde entonces, los desafíos para conseguir un desarrollo sostenible se han llevado al campo de la construcción en diferentes líneas de investigación. La construcción constituye uno de los principales sectores emisores de gases de efecto invernadero (Liu et al., 2013). La industria de la construcción, junto con sus industrias auxiliares, pasa por ser uno de los mayores consumidores de recursos naturales, tanto renovables como no renovables, que está alterando negativamente el medio ambiente. Agota 2/5 partes de los áridos y 1/4 de la madera, y consume el 40 % de la energía total y el 16 % de agua al año (Lippiatt, 1999; Chong et al., 2009). El consumo de materiales crece constantemente, con más de 23 mil millones de toneladas de hormigón producido anualmente (Schokker, 2010; WBCSD, 2006). En 2010, de acuerdo con la International Cement Review, la producción mundial de cemento se elevó a alrededor de 3,3 millones de toneladas/año, lo que significa un aumento más del 100% en casi 10 años. La fabricación de cemento Portland genera grandes cantidades de CO2 debido a las altas demandas de energía necesarias para la fabricación y calcinación de la piedra caliza. La producción mundial de cemento llegó a 1,6 mil millones de toneladas/año en 2001, lo que corresponde a aproximadamente el 7 % de la cantidad mundial de dióxido de carbono liberado a la atmósfera (Bremner, 2001). Otros estudios indican que la contribución de la industria cementera a las emisiones de gases de efecto invernadero supera el 5% del total (Worrell et al., 2001). En Australia, para mantener la demanda en la construcción, se necesitan cada año aproximadamente 30 millones de toneladas de productos, más del 56 % de esta cantidad es hormigón, y el 6%, acero (Walker-Morison et al., 2007). En 2001, España tuvo la mayor tasa de consumo de hormigón en Europa, con 1,76 m3 de hormigón per cápita por año (ECO-SERVE, 2004). En 2007, la producción de clinker alcanzó alrededor de 55 millones de toneladas en España. Sin embargo, este número se redujo a 14,1 millones de toneladas en 2013 como consecuencia de la crisis financiera (Oficemen, 2016).

Existen recomendaciones para reducir el impacto ambiental de las estructuras de hormigón (fib, 2012). La citada guía considera el ciclo completo de las fases del ciclo de vida, de la cuna a la tumba. La correcta selección de las materias primas, así como los aditivos y adiciones, constituye una de las claves para reducir el impacto ambiental. Otra forma de reducir los impactos pasa por el uso de procesos más respetuosos con el medio ambiente en la producción y el transporte del hormigón. En esta guía también se habla de optimizar estructuras basándose en indicadores ambientales y de desempeño. Por último, concluye que las estructuras deben optimizarse comparando diferentes alternativas y teniendo en cuenta los indicadores ambientales, especialmente las emisiones de CO2, pues pasa por ser uno de los factores más importantes para evaluar el impacto ambiental. Además, fib (2012) indica cómo la consideración del ciclo de vida completo de una estructura antes de iniciar su construcción puede conseguir reducciones significativas de CO2.

Por tanto, la sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento. Las investigaciones se centran en proporcionar recomendaciones para seleccionar materiales estructurales basados en indicadores económicos, ambientales y de constructibilidad (Zhong & Wu, 2015), utilizando hormigón y acero reciclado (Collins, 2010, Yellishetty et al., 2011), empleando materiales novedosos como cementos con baja huella de carbono y adiciones como substitutos del clínker (García-Segura et al., 2014a; Gartner, 2004), evaluando las emisiones del ciclo de vida de las estructuras de hormigón (Barandica et al., 2013; Tae et al., 2011), reduciendo las emisiones de CO2 de la construcción (2003), optimizando el proceso de producción de cemento (Castañón et al., 2015), estimando la energía consumida en los proyectos de construcción (Wang y Shen, 2013; Wang et al., 2012) e identificando la mejor planificación del mantenimiento (Liu y Frangopol, 2005, Yang et al., 2006), entre otros. En las referencias también hemos dejado alguno de nuestros trabajos en este sentido.

Referencias:

  • Barandica, J.M.; Fernández-Sánchez, G.; Berzosa, Á.; Delgado, J.A.; Acosta, F.J. (2013). Applying life cycle thinking to reduce greenhouse gas emissions from road projects. Journal of Cleaner Production, 57, 79–91.
  • Bremner, T.W. (2001). Environmental aspects of concrete: problems and solutions. In: Proceedings of first all-Russian conference on concrete and reinforced concrete, Moscow, Russia.
  • Butlin, J. (1989). Our common future. By World commission on environment and development. (London, Oxford University Press, 1987, pp.383). Journal of International Development, 1(2), 284–287.
  • Castañón, A.M.; García-Granda, S.; Guerrero, A.; Lorenzo, M.P.; Angulo, S. (2015). Energy and environmental savings via optimisation of the production process at a Spanish cement factory. Journal of Cleaner Production, 98, 47–52.
  • Chong, W.K.; Kumar, S.; Haas, C.T.; Beheiry, S.M.A.; Coplen, L.; Oey, M. (2009). Understanding and interpreting baseline perceptions of sustainability in construction among civil engineers in the United States. Journal of Management in Engineering, 25(3):143–154.
  • Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.
  • ECO-SERVE. (2004). Baseline report on sustainable aggregate and concrete industries in Europe. European Commission, Hellerup.
  • fib. International Federation for Structural Concrete. Task Group 3.8, T. for green concrete structures. (2012). Guidelines for green concrete structures. International Federation for Structural Concrete. Task Group 3.8, Technologies for green concrete structures.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498.
  • Lippiatt, B.C. (1999). Selecting cost effective green building products: BEES approach. Journal of Construction Engineering and Management, 125:448–455.
  • Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.
  • Liu, S.; Tao, R.; Tam, C.M. (2013). Optimizing cost and CO2 emission for construction projects using particle swarm optimization. Habitat International, 37:155–162.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Oficemen. (2012). Annual report of Spanish cement sector 2016. Annual report of Spanish cement sector 2016. Retrieved from https://www.oficemen.com/reportajePag.asp?id_rep=1619
  • Schokker A.J. (2010). The sustainable concrete guide: strategies and examples. 1 ed. U.S.G.C. Council; 2010. Michigan: U.S. Green Concrete Council.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5), 05015020.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2017a). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53.
  • Sierra, L.A.; Yepes, V.; Pellicer, E. (2017b). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review ,67:61-72. .
  • Tae, S.; Baek, C.; Shin, S. (2011). Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete. Environmental Impact Assessment Review, 31(3), 253–260.
  • Walker-Morison, A.; Grant, T.; McAlister, S. (2007). The environmental impact of building materials. Environment design guide. PRO 7.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • World Business Council for Sustainable Development (WBCSD) (2006). Cement Industry Energy and CO2 Performance: Getting the Numbers Right; Geneva: World Business Council for Sustainable Development, (WBCSD).
  • Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26, 303–329.
  • Yang, S.I.; Frangopol, D.M.; Kawakami, Y.; Neves, L. C. (2006). The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs. Reliability Engineering & System Safety, 91(6), 698–705.
  • Yellishetty, M.; Mudd, G.M.; Ranjith, P.G.; Tharumarajah, A. (2011). Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental Science & Policy, 14(6), 650–663.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.
  • Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140, 1037-1048.
  • Zhong, Y.; Wu, P. (2015). Economic sustainability, environmental sustainability and constructability indicators related to concrete- and steel-projects. Journal of Cleaner Production, 108, 748–756.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)

Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. Continue reading “Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)”

Environmental impact shares of a reinforced concrete earth-retaining wall with buttresses

http://blog.360gradosenconcreto.com/tipos-muros-contencion-prefabricados-concreto/

Abstract: Structural engineers focus on the reduction of carbon emissions in reinforced concrete structures, while other impacts affecting ecosystems and human health become secondary or are left behind. The featured life cycle assessment shows the impacts corresponding to each construction stage of an earth-retaining wall with buttresses. In this study the contribution ratio of each input flow is analyzed. Accordingly, concrete, landfill, machinery, formwork, steel, and transport are considered. Results show that despite the concrete almost always accounts for the largest contribution to each impact, the impact shares of steel present noticeable sensitivity to the steel-manufacturing route. The parameter of study is the recycling rate, usually 75% reached in Spain. Noticeable variation is found when the recycling content increases. The relationship between the impacts of each material with the amount of material used discloses research interest.

 

Keywords: Life cycle assessment, Functional unit, Steel recycling rate, Concrete ratio, Photochemical oxidation, Ozone depletion, Global warming.

Reference:

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V.; CIROTH, A. (2017). Environmental impact shares of a reinforced concrete earth-retaining wall with buttresses. The Ninth International Structural Engineering and Construction Conference, Resilient Structures and Sustainable Construction ISEC-9, Valencia, Spain July 24-July 29.

Descargar (PDF, 356KB)

 

Optimización multiobjetivo basada en fiabilidad del ciclo de vida de un puente en cajón postesado

Fuente: http://www.freyssinet.es/wp/?cat=3

Os presentamos un artículo, que se ha editado en formato abierto, donde se ha realizado la optimización a lo largo de su ciclo de vida de un puente en cajón postesado basándose en fiabilidad. Para ilustrar la metodología, se ha utilizado como ejemplo un puente situado en una zona costera y, por tanto, sometido a la corrosión por ambiente marino. Se ha optimizado el puente con múltiples objetivos simultáneos: el coste, las emisiones totales de CO2 (incluyendo la recarbonatación), el inicio de la propagación de la corrosión y la seguridad. Primero se ha construido una frontera de Pareto con todas las soluciones óptimas con los múltiples objetivos y luego se ha estudiado el mantenimiento del puente, optimizando este mantenimiento atendiendo a criterios económicos, sociales y ambientales. Este artículo se enmarca dentro del proyecto de investigación BRIDLIFE. Espero que os sea de interés el artículo, que lo podéis descargar gratuitamente y compartir sin problemas (open-access).

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

 

Descargar (PDF, 1.23MB)

 

Aplicación de los métodos de decisión multicriterio al diseño sostenible de puentes

Puente en cajón postesado sobre el Turia (Quart de Poblet). Proyectado por Javier Manterola y construído por Dragados y Construcciones en 1991.

Actualmente existe una tendencia clara hacia la sostenibilidad en los proyectos de estructuras, para lo cual es necesario equilibrar los criterios que apoyan esta sostenibilidad: la economía, el medio ambiente y la sociedad. Estos pilares básicos presentan objetivos diferentes y habitualmente enfrentados entre sí. Esta realidad conduce hacia la necesidad de adoptar procesos de toma de decisiones que permitan alumbrar soluciones capaces de satisfacer, de la mejor manera posible, los principios de sostenibilidad citados. Los puentes forman parte de las infraestructuras básicas de comunicación entre los distintos territorios. Por lo tanto, constituye una necesidad ineludible garantizar la sostenibilidad de este tipo de estructuras a lo largo de su ciclo de vida.

A continuación se presenta un artículo recién publicado que tiene como objetivo principal revisar la aplicación de las técnicas de decisión multicriterio al caso de los puentes. Esta investigación se enmarca dentro del proyecto BRIDLIFE (BIA2014-56574-R), en el cual participan los autores. La revisión se ha realizado atendiendo a las fases del ciclo de vida del puente, teniendo en cuenta aquellos trabajos que proponen soluciones y realizan un proceso directo de toma de decisiones respecto a estas soluciones. Asimismo, también se han considerado aquellas aportaciones que, a pesar de no realizar una selección entre varias soluciones, aplican un método de toma de decisiones para evaluar una solución en particular. La relevancia de estos trabajos estriba en la forma en que se realizan los procesos de evaluación, los cuales constituyen la piedra angular para el proyecto de un puente desde el punto de vista de la sostenibilidad, atendiendo a todas y cada una de las fases de su ciclo de vida.

Este artículo lo podéis descargar en el siguiente enlace: http://www.mdpi.com/2071-1050/8/12/1295, aunque también os lo dejo en el post para vuestra descarga directa.

Referencia:

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability 2016, 8, 1295.

Descargar (PDF, 1.14MB)