Algunas conclusiones de nuestros trabajos en optimización multiobjetivo de puentes

Hoy hace justo un año que realicé mi defensa pública de la plaza de Catedrático de Universidad en el Área de Ingeniería de la Construcción. Tuve en aquel momento la oportunidad de exponer como parte de la prueba un trabajo de investigación, basado fundamentalmente en los trabajos realizados por nuestro grupo. Se trataba del diseño eficiente de puentes de hormigón postesado de sección en cajón unicelular mediante una optimización multiobjetivo basada en criterios sostenibles. Las conclusiones que aquí se resumen son fruto de varios estudios previos para examinar el uso de cementos con adiciones, la importancia de la carbonatación en la captura de CO2 y en la durabilidad, la reutilización del hormigón, el uso del hormigón autocompactante, los diseños sostenibles de puentes artesa prefabricados de hormigón pretensado, la relación entre el coste y el CO2, así como la energía, los diseños sostenibles de pasarelas de hormigón postesado, los algoritmos heurísticos y las técnicas de toma de decisiones para analizar y reducir el conjunto óptimo de Pareto. Los resultados de estos estudios previos fueron la base del trabajo presentado. Se planteó una optimización multiobjetivo basada en criterios económicos, ambientales, de durabilidad y de seguridad. Además, se formuló una herramienta informática que permitió el uso de software comercial para realizar el análisis del puente con elementos finitos, en un proceso de diseño automático. Al final de la entrada os he dejado referencias directamente relacionadas con la investigación de nuestro grupo en optimización multiobjetivo y toma de decisión multicriterio de puentes a lo largo de su ciclo de vida.

En primer lugar, se estudió el diseño óptimo de puentes de carreteras de hormigón postesado de sección en cajón considerando los costes, las emisiones de CO2 y el coeficiente de seguridad global. Para aplicar la metodología propuesta, se realizó un estudio de caso de un puente continuo de tres vanos situado en una zona costera. Los resultados mostraron que tanto el coste económico como la reducción de las emisiones de CO2 conducen a una reducción en el consumo de material y por lo tanto, son objetivos alineados. Ello indica que la optimización de costes es un buen enfoque para lograr un diseño respetuoso con el medio ambiente. El análisis de la frontera de Pareto indicó las variables más eficientes para mejorar la seguridad con el coste mínimo y las emisiones de CO2. Dado que el coste y las emisiones estaban estrechamente relacionados, el desafío se tradujo en la conversión de las limitaciones estructurales de seguridad y durabilidad en funciones objetivo. Este enfoque permitió encontrar múltiples soluciones alternativas que, con un incremento muy pequeño en el coste, consiguen mayor seguridad y durabilidad. Además, se destacó la eficiencia del aumento de la resistencia y del recubrimiento del hormigón para prolongar la vida útil. La frontera de Pareto se utilizó posteriormente para seleccionar planes de mantenimiento del puente óptimos, basados en su nivel inicial de seguridad y durabilidad. Este planteamiento es consistente con el argumento de que el proceso de deterioro puede causar una reducción en la seguridad estructural. Este estudio permitió analizar las ventajas que presenta un diseño optimizado para prolongar la vida útil de la estructura y mejorar su seguridad. Se llevó a cabo una optimización de la vida útil sostenible a través de un enfoque probabilístico. El plan de mantenimiento óptimo tiene como objetivo minimizar los impactos económicos, ambientales y sociales mientras se satisface el objetivo de fiabilidad durante una vida útil. Finalmente, se compararon los costes del ciclo de vida y las emisiones entre las distintas alternativas.

En paralelo, se desarrolló un metamodelo basado en redes neuronales, para reducir el tiempo de cálculo. Las ANNs se entrenaron para predecir la respuesta estructural en términos de los estados límite en función de las variables de diseño, sin necesidad de un análisis completo del puente. Se propuso una metaheurística mejorada basada en la búsqueda de la armonía multiobjetivo. Se mejoró la diversificación y la intensificación en la búsqueda de soluciones para mejorar la convergencia. Finalmente, se propuso una técnica de toma de decisiones llamada AHP-VIKOR bajo incertidumbre para reducir la frontera de Pareto a un conjunto de soluciones preferidas. Este método permite al decisor introducir fácilmente las preferencias en un criterio específico sujeto a incertidumbre.

Las conclusiones generales de este trabajo de investigación fueron las siguientes:

  • La minimización de costes y emisiones de CO2 conduce a un diseño de puente que favorece la eficiencia estructural minimizando la cantidad de materiales. La inclusión del objetivo de seguridad destaca las mejores variables para mejorar la seguridad y por lo tanto, la robustez de cada variable para el diseño eficiente. El objetivo de durabilidad, evaluado como el inicio de la corrosión, estableció la mejor combinación de resistencia y recubrimiento del hormigón para alcanzar un objetivo de vida de servicio.
  • El canto, el espesor de la losa inferior, las armaduras activas y la armadura pasiva longitudinal son las variables principales que proporcionan la resistencia a flexión. Sin embargo, no se recomienda un incremento de espesor de la losa superior y del ala para mejorar la seguridad estructural, pues conduce a pesos propios adicionales. Para mejorar el comportamiento a flexión transversal, se incrementa el espesor del arranque del ala y se disminuye la longitud del ala. La inclinación del alma puede ser constante, pues tanto la profundidad como la anchura de inclinación del alma aumentan en paralelo para mejorar la seguridad. El espesor del alma no es la variable más económica para aumentar la resistencia a esfuerzo cortante; por el contrario, se incrementa la armadura de refuerzo.
  • El uso de hormigón de alta resistencia puede reducir el canto o la cantidad de armadura. Sin embargo, las restricciones relativas a los estados límite de servicio y las cuantías mínimas de armadura condicionan estas variables. Por lo tanto, el hormigón de alta resistencia no es la mejor solución para mejorar la seguridad. Sin embargo, este resultado cambia cuando se tiene en cuenta el ciclo de vida. Un incremento en la resistencia del hormigón alarga la vida útil de servicio, pues se retrasa el inicio de la corrosión. Por otro lado, el incremento en la resistencia del hormigón presenta mejores resultados a lo largo del ciclo de vida para diseños con inicios de corrosión similares, en comparación con el incremento del recubrimiento de hormigón.
  • Un diseño inicial que incorpore la durabilidad como objetivo y no como restricción resulta especialmente beneficioso si se quiere alargar el ciclo de vida de la estructura. Diseños que retrasen el inicio de la corrosión implican un menor coste del ciclo de vida, incluso con costes iniciales más altos. Sin embargo, un nivel de seguridad inicial más alto no siempre ofrece como resultado un mejor rendimiento del ciclo de vida.

 

A partir de los estudios, se extrajeron estas conclusiones específicas:

  • El empleo de cementos con adiciones conlleva una reducción en la captura de carbono y en la vida útil debido a la carbonatación. A pesar de esto, los cementos con adiciones disminuyen las emisiones anuales. El hormigón autocompactante no es aconsejable desde el punto de vista medioambiental. En términos de coste, se obtienen pocas diferencias entre el hormigón vibrado convencional y el hormigón autocompactante.
  • Es fundamental reutilizar el hormigón como gravas en material de relleno para lograr una completa carbonatación y reducir las emisiones de CO2.
  • En el puente postesado estudiado, la reducción del coste en 1 euro disminuye las emisiones de CO2 en 2,34 kg. En cuanto al coeficiente de seguridad global, se obtienen tres relaciones lineales entre el coste y este objetivo. Para aumentar el coeficiente de seguridad global de 1,0 a 1,4, los costes aumentan en 12,5%. Después de este punto, los resultados de mejora de la seguridad son más caros. Con respecto al inicio de la corrosión, con pequeños incrementos de coste se consiguen retrasos significativos.
  • El estado límite de descompresión es restrictivo y condiciona variables como el canto y el número de torones de pretensado. Dado que estas variables también influyen en la flexión, este estado límite no es restrictivo hasta que el coeficiente de seguridad global alcanza 1,4.
  • La relación entre el coste y el CO2 se mantiene para todos los niveles de seguridad y por lo tanto, la optimización de costes es un buen enfoque para minimizar las emisiones independientemente del nivel de seguridad.
  • En estructuras con un espacio de soluciones factibles pequeños, el coste y la emisión se encuentran muy relacionados. Sin embargo, las estructuras de hormigón armado, que presentan espacios factibles mayores, conducen a diseños medioambientales con mayores secciones, mayor cantidad de hormigón, menor acero y horigones con la menor resistencia característica.
  • El plan de mantenimiento óptimo es aquel que presenta menos operaciones que reparen simultáneamente todas las superficies deterioradas. A pesar de que existe un deterioro diferente para cada una de las caras de la sección expuesta, los resultados recomiendan reparar todas las superficies conjuntamente. Las operaciones de mantenimiento deben programarse al mismo tiempo para reducir el impacto de las interrupciones del tráfico.
  • Por lo general, la optimización del coste de mantenimiento también conduce a la minimización de las emisiones de CO2. Esto se atribuye al hecho de que tanto las emisiones como los costes pretenden reducir el número total de operaciones de mantenimiento. Sin embargo, la optimización de costes intenta retrasar la fecha de la primera reparación. Por lo tanto, la determinación del número de operaciones y el retraso de la primera fecha de mantenimiento, reduce también el coste al mínimo.
  • Las redes neuronales constituyen una buena herramienta para predecir la respuesta de la estructura, proporcionar una buena dirección de búsqueda y reducir el coste computacional. Sin embargo, al final del proceso de búsqueda, se necesitan modelos de análisis completo para converger más cerca de la frontera de Pareto real.
  • La transición de la diversificación a la intensificación, que elimina progresivamente la combinación de soluciones y la selección aleatoria, mejora el rendimiento del algoritmo.
  • El método AHP-VIKOR bajo incertidumbre redujo el conjunto de Pareto a pocas soluciones preferidas. Para este estudio de caso, se prefieren las soluciones con el mayor tiempo de inicio de la corrosión, pues la mejora de la durabilidad no implica grandes diferencias de costes.

 

Referencias:

  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  • GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:1016/j.jclepro.2018.03.022
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:1016/j.jclepro.2017.12.140
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI:10.1016/j.acme.2017.02.006
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Design of open reinforced concrete abutments road bridges with hybrid stochastic hill climbing algorithms. Informes de la Construcción, 67(540), e114. DOI:10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. DOI:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Automated design of prestressed concrete precast road bridges with hybrid memetic algorithms. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 145-154. DOI:10.1016/j.rimni.2013.04.010
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7):1190 – 1205. DOI: 1590/S1679-78252014000700007
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0
  • MARTÍ-VARGAS, J.R.; FERRI, F.J.; YEPES, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2):187-209. DOI:10.12989/cac.2013.12.2.187
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99.
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6): 723-740. DOI: 12989/sem.2013.45.6.723
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48:342-352. DOI:10.1016/j.engstruct.2012.09.014
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI:10.1631/jzus.A1100304
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437.
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88(5-6): 375-386. DOI:10.1016/j.compstruc.2009.11.009
  • YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. DOI:10.1016/j.advengsoft.2007.07.007

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tatiana García Segura, Junior Award IALCCE 2018

Es un honor haber dirigido la tesis doctoral de Tatiana García Segura “Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria”. Esta joven doctora ingeniera de caminos acaba de recibir el Premio Internacional al mejor investigador joven del mundo en el ámbito del análisis de estructuras e infraestructuras a lo largo de su ciclo de vida. Se trata del Junior Award IALCCE 2018, que premia al mejor investigador, con una edad menor a 42 años. Es la primera vez que un español gana este galardón, lo cual es un hito para la Escuela de Ingenieros de Caminos de Valencia y para la Universitat Politècnica de València.

Tatiana, que fue becaria FPI del proyecto de investigación HORSOST e investigadora del ICITECH,  ya ganó el primer premio Cemex en sostenibilidad por su trabajo fin de máster “Métricas para el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo”Máster Universitario en Ingeniería del Hormigón, desarrollado dentro del . En este momento, es profesora ayudante doctor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, e investigadora en los proyectos BRIDLIFE y DIMALIFE. Un futuro muy brillante para esta joven investigadora y profesora.

En la fotografía, de izquierda a derecha, Tatiana García Segura, Dan M. Frangopol y Víctor Yepes

A continuación os dejo un listado de los artículos científicos indexados en revistas de fuerte impacto del JCR donde ha participado Tatiana hasta este momento.

Referencias:

  1. GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177
  2. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  3. SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  4. PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  5. GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  6. GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi:10.1007/s00158-017-1653-0
  7. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  8. MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  9. ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085
  10. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  11. GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  12. MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  13. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  14. YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  15. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  16. GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithmLatin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  17. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)

 

Repercusión en la prensa:

https://www.lasprovincias.es/comunitat/mejor-ingeniera-civil-20181109011059-ntvo.html

https://www.lavanguardia.com/local/valencia/20181108/452802983492/una-ingeniera-de-la-upv-gana-un-premio-internacional-de-infraestructura-civil.html

https://www.elperiodic.com/valencia/noticias/592636_tatiana-garcia-primera-ingeniera-espanola-galardonada-international-association-life-cycle-civil-engineering-ialcce.html

https://www.20minutos.es/noticia/3486001/0/profesora-upv-primera-ingeniera-espanola-premiada-por-association-for-life-cycle-civil-engineering/

https://innovadores.larazon.es/es/not/una-espanola-mejor-investigadora-joven-del-mundo-en-infraestructura-civil

https://www.levante-emv.com/comunitat-valenciana/2018/11/08/profesora-upv-mejor-investigadora-joven/1792521.html

https://www.europapress.es/comunitat-valenciana/noticia-profesora-upv-primera-ingeniera-espanola-premiada-association-for-life-cycle-civil-engineering-20181108115129.html

http://www.upv.es/noticias-upv/noticia-10576-tatiana-garcia-es.html

 

Optimización del diseño sostenible de puentes bajo incertidumbre

Nos acaban de publicar en la revista de Elsevier del primer decil, Journal of Cleaner Production, un artículo donde se propone una nueva metodología en la toma de decisiones del diseño óptimo de un puente bajo criterios de sostenibilidad y bajo incertidumbre. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 16 de octubre de 2018 en el siguiente enlace:

https://authors.elsevier.com/c/1XdSi3QCo9R4pK

Abstract:

Today, bridge design seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. This multi-criteria decision-making problem is subject to variability of the opinions of stakeholders regarding the importance of criteria for sustainability. As a result, this paper proposes a method for designing and selecting optimally sustainable bridges under the uncertainty of criteria comparison. A Pareto set of solutions is obtained using a metamodel-assisted multi-objective optimization. A new decision-making technique introduces the uncertainty of the decision-maker’s preference through triangular distributions and thereby ranks the sustainable bridge designs. The method is illustrated by a case study of a three-span post-tensioned concrete box-girder bridge designed according to the embodied energy, overall safety and corrosion initiation time. In this particular case, 211 efficient solutions are reduced to two preferred solutions which have a probability of being selected of 81.6% and 18.4%. In addition, a sensitivity analysis validates the influence of the uncertainty regarding the decisionmaking. The approach proposed allows actors involved in the bridge design and decision-making to determine the best sustainable design by finding the probability of a given design being chosen.

Keywords:

  • Sustainable criteria
  • Uncertainty
  • Decision-making
  • Multi-objective optimization
  • Energy efficiency

 

Reference:

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177

 

 

¿Qué es el Análisis del Ciclo de Vida?

Nuestro grupo de investigación está en estos momentos muy centrado en aspectos relacionados con el análisis del ciclo de vida y con la sostenibilidad de las infraestructuras. Proyectos como BRIDLIFE y DIMALIFE inciden especialmente es estos temas. He considerado, por tanto, de gran interés para el lector, resumir brevemente el concepto, los tipos, algo de historia y proporcionar unas pequeñas referencias al respecto. Espero que os sean de interés.

El Análisis del Ciclo de Vida clásico constituye una metodología objetiva que trata de evaluar las cargas ambientales asociadas a un producto, proceso o actividad, identificando y cuantificando el uso de materia y energía además de las emisiones al entorno (Olivera et al., 2016).

Sus orígenes se remontan a finales de los años 60. Dos investigadores del Instituto de Investigación del Medio Oeste (MRI), Robert Hunt y William Franklin empezaron a trabajar en una técnica que permitiese cuantificar la energía demandada y los recursos, así como las emisiones de gases de efecto invernadero (GEI) por parte de las industrias (Trusty y Deru, 2005). Esta técnica paso a llamarse como Análisis de Perfil Ambiental y de Recursos (REPA) y se utilizó por primera vez en 1969 por el MRI junto a la compañía Coca-Cola para analizar y seleccionar los materiales más ecológicos y como tratarlos en su final de vida (Gerilla et al., 2007).

La primera expansión del uso de esta tecnología tuvo lugar durante la crisis energética de los años 70, para estudiar el consumo energético de productos de embalaje de plástico o cartón. A finales de los 80’s y principios de los 90’s tuvo de nuevo un gran alcance como herramienta de marketing (Owens, 1996).

Con los avances metodológicos de la herramienta y la proliferación de resultados muy dispares en los diferentes estudios realizados, se decidió llevar a cabo una armonización del ACV. Con dicha finalidad aparecieron diversas directrices, destacando la holandesa y la nórdica, que también incluían recomendaciones contradictorias.

A inicios de los 90’s, la Sociedad de Toxicología Ambiental y Química (SETAC) alcanzó a un consenso mediante grupos consultivos de América del Norte y Europa y elaboraron el “Código de práctica para la evaluación del ciclo de vida”. Paralelamente, surgieron otras iniciativas como la Guía LCA Z-760 de la Asociación de Estandarización Canadiense.

Finalmente, a finales de los años 90, surgieron los procesos de estandarización más reconocidos por parte de la Organización Internacional de Normalización (ISO) (Russell et al., 2005).

La ISO emitió los estándares internacionales más relevantes en 1997, definiendo el ACV como “un método para resumir y evaluar la carga ambiental de un producto (o servicio) en todo el ciclo de vida, y el impacto o influencia potencial sobre el medio ambiente” en la serie de normas ISO 14040 (AENOR, 2006). Esta metodología es compatible con la evaluación de los impactos socioeconómicos, puesto que comparten ciertos elementos que aportan datos comparativos muy útiles para la toma de decisiones frente a nuevos proyectos o acciones de mejora.

De este modo quedan las tres dimensiones del análisis del ciclo de vida:

  • Análisis del Ciclo de Vida Ambiental (ACV-A): Metodología ya presentada que contempla la carga ambiental producida por un producto o servicio durante todo el ciclo de vida.
  • Coste del Ciclo de Vida (CCV): Este análisis se centra en la etapa de diseño de un producto, analizando los costes directos y los beneficios de las actividades económicas, como los costes para la prevención de la contaminación, los costes de las materias primas, los impuestos y los intereses sobre el capital entre otros, en resumen, es una recopilación y evaluación de todos los costes relacionados con un producto a lo largo de todo su ciclo de vida.
  • Análisis del Ciclo de Vida Social (ACV-S): Se trata de una herramienta de evaluación de impactos sociales cuyo objetivo es analizar los aspectos sociales y socio-económicos de los productos y sus impactos potenciales (positivos y negativos) durante todo el ciclo de vida.

 

Como combinación de las tres tipologías, se plantea el Análisis del Ciclo de Vida de la Sostenibilidad (ACV-SOS) realizando un análisis integrado de cualquier producto o servicio.

La Comisión Europea planteó una guía de ruta a esta situación, por medio del proyecto CALCAS (Coordination for innovation in Life Cycle for Sustainability) desde el 2006, con el fin de organizar las distintas modalidades que han surgido mediante una futura norma ISO ACV, que englobara un análisis multicriterio sobre sostenibilidad (van der Giesen et al., 2013).

Aunque la metodología de las tres dimensiones del ACV está basada en la norma ISO 14040, esta no tiene dentro de su alcance el estudio del impacto económico y social, por lo que es necesario combinarla con otras herramientas para profundizar ese análisis. Os dejo a continuación una serie de referencias bibliográficas por si os interesa profundizar más en el tema.

Referencias

  • AENOR (2006). ISO 14040:2006. Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia. Madrid.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GERILLA, G. P.; TEKNOMO, K.; HOKAO, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment, 42(7), 2778–2784.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 (link).
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196:698-713. https://doi.org/10.1016/j.jclepro.2018.06.110
  • OLIVERA, A.; CRISTOBAL, S.; SAIZAR, C. (2016). Análisis de ciclo de vida ambiental, económico y social. INNOTEC, 7, 20–27.
  • OWENS, J. W. (1996). LCA Methodology LCA Impact Assessment Categories Technical Feasibility and Accuracy. International Journal of Life Cycle Assessment, 1(3), 151–158.
  • PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420.  https://doi.org/10.1016/j.jclepro.2018.04.268
  • RUSSELL, A.; EKVALL, T.; BAUMANN, H. (2005). Life cycle assessment – Introduction and overview. Journal of Cleaner Production, 13(13–14), 1207–1210.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure.Journal of Construction Engineering and Management, 142(5):  05015020. DOI: 10.1061/(ASCE)CO.1943-7862.0001099.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI: 10.1016/j.jclepro.2018.03.022.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 
  • TRUSTY, W.; DERU, M. (2005). The U.S. LCI database project and its role in Life Cycle Assessment. Building Design and Construction, 1, 26–29.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo valorar el impacto social de las infraestructuras? Estado del arte

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production (primer decil del JCR), de la editorial ELSEVIER, en la que revisamos el estado del arte de la investigación realizada a nivel internacional sobre la aplicación de las técnicas de valoración multicriterio al impacto social de las infraestructuras. El tema no es nada sencillo, puesto que los impactos sociales son mucho más difíciles de valorar que los impactos económicos o medioambientales. Nos referimos a aspectos como el empleo, el bienestar social, la salud pública, la productividad, el desarrollo regional, la equidad intergeneracional, la igualdad social, la educación, etc. Además, hay que tener en cuenta que, al igual que una piedra cae en una balsa de agua, las ondas generadas (el impacto) presentan un estado transitorio (corto plazo) y otro estacionario (largo plazo). A veces es difícil conjugar el corto y el largo plazo en la evaluación de la sostenibilidad social.

La editorial ELSEVIER nos permite la distribución gratuita del artículo hasta el 26 de mayo de 2018. Por tanto, os paso el enlace para que os podáis descargar este artículo: https://authors.elsevier.com/c/1Wr0s3QCo9R0Il

Referencia: 

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. https://doi.org/10.1016/j.jclepro.2018.03.022

Abstract:

Nowadays multi-criteria methods enable non-monetary aspects to be incorporated into the assessment of infrastructure sustainability. Yet evaluation of the social aspects is still neglected and the multi-criteria assessment of these social aspects is still an emerging topic. Therefore, the aim of this article is to review the current state of multi-criteria infrastructure assessment studies that include social aspects. The review includes an analysis of the social criteria, participation and assessment methods. The results identify mobility and access, safety and local development among the most frequent criteria. The Analytic Hierarchy Process and Simple Additive Weighting methods are the most frequently used. Treatments of equity, uncertainty, learning and consideration of the context, however, are not properly analyzed yet. Anyway, the methods for implementing the evaluation must guarantee the social effect on the result, improvement of the representation of the social context and techniques to facilitate the evaluation in the absence of information.

Keywords:

Infrastructure
Multi-criteria
Social sustainability
Equity
Stakeholders
Uncertainty

 

Highlights:

  • Review of multi-criteria assessment methods of infrastructure social sustainability.
  • Identify trends of social criteria considered.
  • Identify trends of participation of stakeholders.
  • Identify trends of multi-criteria methods.
  • Identify trends of consideration of equity, context and social learning.

 

 

La perspectiva del ciclo de vida de los puentes

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más de 10 años investigando la optimización de estructuras de hormigón

Parece que fue ayer, pero este 2018 cumplimos 10 años desde que nos publicaron el primer artículo internacional relacionado con la optimización heurística de estructuras de hormigón. Sin embargo, todo empezó un poco antes, en el 2002, año en que defendí mi tesis doctoral denominada “Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW”. Con ella pude ponerme al día con los procedimientos de optimización heurística más prometedores en ese momento. Sin embargo, pronto me dí cuenta de las posibilidades que tenía aplicar estos algoritmos a la optimización de problemas reales de ingeniería, en particular las estructuras de hormigón.

Por tanto, en septiembre del año 2002 fue el inicio del Grupo de Investigación de Procedimientos de Construcción, Optimización y Análisis de Estructuras. La iniciativa de creación del grupo correspondió a los profesores González-Vidosa y Yepes Piqueras. El primero de ellos, con una amplia experiencia en la investigación y la práctica profesional de las estructuras de hormigón armado y pretensado; y el segundo, con una experiencia reciente en el campo de la optimización heurística en la ingeniería. A partir de ese momento empezaron a gestarse las primeras tesis doctorales, las primeras de las cuales se defendieron en el año 2007, correspondientes a Cristian Perea de Dios y a Ignacio Javier Payá Zaforteza. En el año 2008 se publicaron nuestros tres primeros artículos: Perea et al. (2008), Payá et al. (2008) y Yepes et al. (2008).

En aquellos momentos, las preguntas a las que pretendíamos dar una solución fueron las siguientes:

  • ¿Es capaz la inteligencia artificial de diseñar automáticamente las estructuras?
  • ¿La inteligencia artificial podrá suplantar la experiencia del ingeniero en el prediseño de las estructuras?
  • ¿Se pueden utilizar técnicas procedentes del campo de la Investigación Operativa en la optimización de las estructuras?
  • ¿Puede alcanzarse una economía importante en los costes de construcción de las estructuras sin merma de la calidad?
  • ¿Aparecerán nuevas patologías si los módulos de optimización automática empiezan a implantarse de forma habitual en los paquetes de cálculo comerciales?
  • ¿Deberían revisarse las normas de cálculo si se extiende el cálculo optimizado de estructuras?
  • ¿Deberán tenerse en cuenta estados límites no considerados hasta ahora en la comprobación de las estructuras optimizadas?
  • ¿Pueden optimizarse varios criterios a la vez? ¿Cómo son las estructuras de bajo coste y alta seguridad?
  • ¿Es posible valorar el coste de la seguridad integral de una estructura?
  • ¿Podemos diseñar estructuras de bajo coste y que a la vez consuman poco CO2 y energía para hacer una ingeniería sostenible?
  • ¿Se puede aplicar el concepto de “huella ecológica” al diseño de las estructuras?

 

Fueron nuestros tres primeros artículos internacionales, pero a fecha de hoy ya se han publicado más de 60 y dirigido una quincena de tesis doctorales, así como una decena de proyectos de investigación. La lista la podéis ver en el blog: http://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Referencias:

PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688.

PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610.

YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated AnnealingEngineering Structures30(3): 821-830.

 

Los puentes de sección en cajón de hormigón postesado

Figura 1.- Esquema de un puente de hormigón postesado de sección en cajón para carreteras

Una viga de sección en cajón unicelular consta de una losa superior, dos almas y una losa inferior (Figura 1). La losa superior materializa la plataforma del puente, actúa como cabeza de compresión frente a momentos flectores positivos y sirve de alojamiento del pretensado necesario para resistir los momentos negativos. Las almas sostienen la losa superior, transmiten las cargas de cortante a los apoyos del puente y pueden alojar los cables de pretensado cuando estos se desplazan a lo largo del puente. Por último, la losa inferior une las secciones inferiores de las almas, aloja el pretensado para resistir los momentos positivos, sirve de cabeza de compresión ante momentos negativos y cierra el circuito de torsión de la estructura.

Según Schlaich y Scheef (1982), la sección en cajón es la tipología de superestructura más ampliamente utilizada en el proyecto y construcción de puentes. El Puente de Sclayn, sobre el río Maas, fue el primer puente continuo pretensado de sección en cajón. El puente, con dos tramos de 62,7 m, fue construido por Magnel en 1948. La sección en cajón no solo se puede encontrar en los puentes viga, sino en otras tipologías tipo arco, pórtico, atirantados y colgantes. El número de puentes continuos con esta sección ha aumentado recientemente (Ates, 2011) debido a su resistencia tanto a momentos flectores positivos como negativos, así como a la torsión. Además, otra característica importante es el peso propio reducido frente a otras tipologías. En cuanto a los métodos de construcción, los puentes de sección en cajón se pueden construir “in situ” o bien prefabricarse en dovelas que posterormente se izan y pretensan (Sennah y Kennedy, 2002). En la Figura 2 se muestra un puente en cajón situado sobre el nuevo cauce del río Turia, cuyo autor es Javier Manterola y que fue uno de los primeros puentes que tuve la oportunidad de construir durante mi etapa profesional en Dragados y Construcciones, S.A.

Figura 2.- Imagen aérea de la Estructura E-10, sobre el nuevo cauce del Turia, de Javier Manterola (1991). Uno de los primeros puentes que tuve la oportunidad de construir en mi etapa profesional en Dragados y Construcciones, S.A.

La investigación en el ámbito de los puentes en cajón ha tratado de mejorar su diseño (Yepes, 2017). Al principio, los trabajos se centraron en mejorar el comportamiento estructural (Chang y Gang, 1990; Ishac y Smith, 1985; Luo et al., 2002; Mentrasti, 1991; Razaqpur y Li, 1991; Shushkewich, 1988). Estos trabajos se centraron en el análisis del cortante y la distorsión de la sección. Posteriormente, Ates (2011) estudió el comportamiento de un puente viga continuo durante la etapa de construcción, incluyendo efectos dependientes del tiempo. Moon et al. (2005) también se centraron en la etapa de construcción, estudiando las grietas que aparecieron en la losa inferior de un puente prefabricado, que ocurrieron por una deformación excesiva durante el tesado provisional de las dovelas.

Otros autores investigaron el efecto de las condiciones de durabilidad en la resistencia. Liu et al. (2009) propusieron detectar los daños desarrollando técnicas de monitorización y evaluando el estado del puente. Guo et al. (2010) evaluaron la fiabilidad para estudiar la fluencia, la retracción y la corrosión a lo largo del tiempo de un puente mixto de vigas en cajón expuesto a un ambiente de cloruros. Lee et al. (2012) propusieron un sistema de gestión del ciclo de vida de puentes en cajón que integrase el diseño y la construcción. Fernandes et al. (2012) utilizaron métodos magnéticos para detectar la corrosión en los cables de pretensado de puentes prefabricados. Saad-Eldeen et al. (2013) estudiaron el momento flector último en vigas afectadas por corrosión. Los resultados se utilizaron para proponer un módulo tangente equivalente que tiene en cuenta la reducción total del área de la sección transversal debido a este tipo de degradación.

También existen algunas recomendaciones para el predimensionamiento de los puentes en cajón (Schlaich y Scheff, 1982; Fomento, 2000; SETRA, 2003). Sin embargo, consta relativamente muy poca investigación que haya abordado su diseño eficiente. Schlaich y Scheff (1982) indican que en el caso de puentes de sección en cajón “la solución óptima, siempre y exclusivamente una evaluación subjetiva, solo puede ser encontrada a través de la comparación de muchas soluciones alternativas”. La eficiencia, entendida como la máxima seguridad posible con un mínimo de inversión, constituye un objetivo común en el diseño estructural. Este tipo de problema presenta tal cantidad de variables, cada uno de las cuales puede adoptar una amplia gama de valores discretos, que hace que el espacio de soluciones sea tan inmenso que es muy difícil abordar la optimización sin emplear la inteligencia artificial. Además de esto, la preocupación por el medio ambiente, la importancia de la durabilidad y el desarrollo de nuevos materiales pueden modificar el diseño del puente. Los métodos de optimización ofrecen una alternativa eficaz a los diseños basados en la experiencia (García-Segura et al., 2014a; 2014b; 2015; 2017a; 2017b; García-Segura y Yepes, 2016; Yepes et al., 2017). Así, estas técnicas se han utilizado para abordar la optimización de sistemas estructurales reales. Por último, destacar la aplicación de las técnicas de decisión multicriterio a la hora de proyectar este tipo de puentes (Penadés-Plà et al., 2016).

Referencias:

  • Ates, S. (2011). Numerical modelling of continuous concrete box girder bridges considering construction stages. Applied Mathematical Modelling, 35(8), 3809–3820.
  • Chang, S.T.; Gang, J. Z. (1990). Analysis of cantilever decks of thin-walled box girder bridges. Journal of Structural Engineering, 116(9), 2410–2418.
  • Fernandes, B.; Titus, M.; Nims, D.K.; Ghorbanpoor, A.; Devabhaktuni, V. (2012). Field test of magnetic methods for corrosion detection in prestressing strands in adjacent box-beam bridges. Journal of Bridge Engineering, 17(6), 984–988.
  • Fomento M. (2000). New overpasses: general concepts. Madrid, Spain: Ministerio de Fomento.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • Guo, T.; Sause, R.; Frangopol, D.M.; Li, A. (2010). Time-Dependent Reliability of PSC Box-Girder Bridge Considering Creep, Shrinkage, and Corrosion. Journal of Bridge Engineering, 16(1), 29-43.
  • Ishac, I.I.; Smith, T.R.G. (1985). Approximations for Moments in Box Girders. Journal of Structural Engineering, 111(11), 2333–2342.
  • Liu, C.; DeWolf, J.T.; Kim, J.H. (2009). Development of a baseline for structural health monitoring for a curved post-tensioned concrete box–girder bridge. Engineering Structures, 31(12), 3107–3115.
  • Luo, Q.Z.; Li, Q.S.; Tang, J. (2002). Shear lag in box girder bridges. Journal of Bridge Engineering, 7(5), 308.
  • Mentrasti, L. (1991). Torsion of box girders with deformable cross sections. Journal of Engineering Mechanics, 117(10), 2179–2200.
  • Moon, D.Y.; Sim, J.; Oh, H. (2005). Practical crack control during the construction of precast segmental box girder bridges. Computers & Structures, 83(31-32), 2584–2593.
  • Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.
  • Razaqpur, A.G.; Li, H. (1991). Thin‐walled multicell box‐girder finite element. Journal of Structural Engineering, 117(10), 2953-2971.
  • Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. (2013). Effect of corrosion severity on the ultimate strength of a steel box girder. Engineering Structures, 49, 560–571.
  • Schlaich, J.; Scheff, H. (1982). Concrete Box-girder Bridges. International Association for Bridge and Structural Engineering. Zürich, Switzerland.
  • Sennah, K.M.; Kennedy, J.B. (2002). Literature review in analysis of box-girder bridges. Journal of Bridge Engineering, 7(2), 134–143.
  • SETRA (2003). Ponts en béton précontraint construits par encorbellements successifs: guide de concéption. M.E.T.L.T.M.
  • Shushkewich, K.W. (1988). Approximate analysis of concrete box girder bridges. Journal of Structural Engineering, 114(7), 1644–1657.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Motivos para renovar la metodología de diseño de las estructuras

https://construblogspain.wordpress.com/

Los métodos tradicionales empleados para el proyecto de un puente se basan en procedimientos de prueba y error que sirven para mejorar los diseños (Figura 1). Si bien la experiencia del proyectista permite definir “a priori” la geometría de la estructura, el resto de variables se determinan atendiendo al cumplimiento de los diferentes estados límite exigidos por los reglamentos para las situaciones de proyecto consideradas. De esta forma, la solución propuesta, si bien es funcionalmente correcta, no tiene porque ser la óptima. Los métodos de optimización, como pueden ser los algoritmos metaheurísticos o estocásticos, proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. Estos algoritmos se caracterizan porque combinan unas reglas de decisión y la aleatoriedad para buscar de forma eficaz soluciones de alta calidad en espacios de soluciones de gran tamaño, tal y como son los originados por los problemas estructurales reales. Además, al explorar una gran cantidad de posibles combinaciones, encuentra soluciones que pueden estar alejadas de las reglas de diseño habituales empleadas por los proyectistas.

Figura 1. Diseño por prueba y error de las estructuras (Yepes, 2017)

Así, por ejemplo, los puentes de sección en cajón constituyen uno de las tipologías más habituales en los puentes continuos, pues presentan ventajas tanto desde la perspectiva de su eficiencia resistente como por su bajo peso propio. Sin embargo, las normas de diseño actuales no siempre contemplan los objetivos y las prioridades de una sociedad cambiante. El informe Brundtland (WCED, 1987) propone una visión a largo plazo para mantener los recursos, que serán necesarios para las necesidades futuras. El desarrollo sostenible requiere una triple visión que equilibre el desarrollo económico y las necesidades ambientales y sociales. Por lo tanto, las preocupaciones por construir un futuro más sostenible obligan a considerar aspectos como el impacto ambiental, la durabilidad y el nivel de seguridad, entre otros. Esto ha llevado al desarrollo de materiales de baja emisión de carbono, la búsqueda de nuevos diseños que reduzcan el impacto ambiental, la planificación de mantenimiento para prolongar la vida útil de las estructuras y la evaluación de su ciclo de vida para contemplar su impacto en su conjunto.

Esta nueva visión implica renovar la metodología de diseño de estructuras de modo que se consideren los criterios de sostenibilidad, que permita el uso de nuevos materiales y que, además, garantice un análisis estructural preciso. En este sentido, la optimización multiobjetivo encuentra soluciones óptimas con respecto a distintos objetivos, algunos de ellos contradictorios entre sí. Los actuales procedimientos de optimización heurística han permitido el diseño automatizado de estructuras óptimas. Sin embargo, existe una tendencia a considerar el diseño inicial y las operaciones de mantenimiento de la estructura como objetivos separados. Es decir, por una parte se estudia el diseño óptimo de una estructura para cumplir con los estados límite últimos y de servicio, y por otra parte, se considera la optimización de las operaciones de mantenimiento del puente durante su vida útil como un objetivo diferente, partiendo de una estructura ya construida, con un determinado estado de seguridad conocido. Como el mantenimiento depende del estado, el diseño inicial debe considerar los aspectos del ciclo de vida que también minimizan el mantenimiento futuro. Por lo tanto, es importante considerar la durabilidad con el fin de diseñar estructuras longevas y reducir los impactos a largo plazo. Es decir, se debe proyectar una estructura considerando todos los aspectos relacionados con su ciclo de vida.

La optimización multiobjetivo (MOO) de las estructuras reales requiere tiempos de cálculo elevados, incluso con la potencia de los actuales ordenadores, debido a la existencia de muchas variables de decisión, al procedimiento de análisis con métodos como el de los elementos finitos y al número de funciones objetivo consideradas. El uso de modelos predictivos tales como las redes neuronales artificiales (Artificial Neural Networks, ANNs) permite reducir el número necesario de evaluaciones exactas de la estructura y sustituir dicho cálculo por predicciones aproximadas. ANN aprende de los datos disponibles y permite predicciones incluso cuando las relaciones son altamente no lineales. Esta característica reduce el elevado coste computacional de las interaciones necesarias en los algoritmos de optimización heurística, al sustituir en dicho proceso una parte de los cálculos exactos por otros aproximados.

MOO conduce a una gama de soluciones óptimas, que se consideran igualmente buenas en función de los mútiples objetivos –la denominada frontera de Pareto-. El proceso de toma de decisiones para elegir la mejor de las opciones tiene lugar a posteriori, donde los expertos eligen la mejor solución en función de sus preferencias utilizando técnicas de toma de decisiones. Sin embargo, la asignación de pesos a cada uno de los objetivos del problema puede estar sujeta a incertidumbres o falta de objetividad. Sobre esta base, este trabajo sugiere una metodología capaz de introducir la información de selección (preferencia) en un proceso de toma de decisiones multicriterio en el que existen incertidumbres asociadas a la comparación de criterios.

Referencias:

García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.

García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.

García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,

García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.

Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.

Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352.

Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V.(2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.

Yepes, V.; Martí, J.V.; García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.

Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)

Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. Continue reading “Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)”