Velocidad crítica de giro de un molino de bolas

Figura 1. Molino de bolas. https://commons.wikimedia.org/wiki/File:Ball_mill.gif

La velocidad crítica es aquella a la que una partícula infinitesimal en la periferia interna del molino se centrifugaría (se puede ver en las Figuras 1 y 2). Cuando se alcanza esta velocidad, el molino pierde su capacidad de molienda, ya que una parte de la carga de materiales molturadores deja de trabajar.

Siguiendo la recomendación de Wills y Napier-Munn (2006), se recomienda que el molino opere entre el 50% y el 90% de su velocidad crítica, dependiendo de factores económicos. Sin embargo, el punto de máxima eficiencia, medido por la potencia requerida para accionar el molino, se encuentra cerca del 75%. Por lo tanto, se suelen utilizar velocidades de rotación del 65-70% para los molinos de bolas y del 50-70% para los molinos de barras.

Figura 2. Equilibrio entre el peso de una partícula y la fuerza centrífuga dentro de un molino de bolas

Os presento a continuación la demostración de dicha velocidad crítica y un problema de aplicación. Podéis observar que esta velocidad crítica es independiente del tipo de material molido. Espero que os sea de interés.

Descargar (PDF, 144KB)

Referencias:

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

WILLS, B.A.; NAPIER-MUNN, T. (2006). Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 7th edition.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trómeles: cribas dinámicas y cilindros lavadores

Figura 1. Trómel lavador de áridos. https://minerales-maquinaria.com/tromer-lavador-de-aridos-y-minerales/

Las cribadoras tipo trómel son tambores giratorios constituidos por chapas perforadas curvadas o paneles de malla ensamblados en un cilindro que gira alrededor de su eje central o a través de un tren de neumáticos, de entre 4 y 24 ruedas, la mitad de las cuales son motrices. Trabajan tanto en vía seca como húmeda, aunque es común que sean trómeles lavadores.

La rotación favorece la disgregación del material, desempeñando así un papel de lavado. El rechazo se transporta por el tambor hasta que se descargan por el extremo del equipo. Para facilitar el movimiento del material en su interior, están inclinados de 5º a 7º sobre la horizontal y se encuentran equipados con deflectores internos que empujan y voltean el material. La limpieza de los orificios se realiza facilitando la caída del grano atascado a su paso por la parte superior de su recorrido, donde la gravedad hace que las partículas caigan con la ayuda de las vibraciones que acompañan el movimiento.

Los tambores giran entre un 30 % y un 45 % de su velocidad crítica, evitando el centrifugado, siendo la velocidad periférica de 40 a 50 r.p.m. La capacidad de transporte se puede estimar como 32·Di2 (m³/h), donde Di es el diámetro interno del tambor expresado en metros. Estas cribas suministran el material clasificado por tamaños, empezando por la fracción más fina y terminando con la más gruesa. Es por ello que los diámetros de las cribas van de menor a mayor (Figura 2). Los finos se descargan a través de las paredes del cilindro.

Figura 2. Trómel de cribado. https://en.wikipedia.org/wiki/Trommel_screen

Las dimensiones habituales del diámetro interno de estos trómeles varían de 1,5 a 3 m, con longitudes aproximadas de tres veces este diámetro y potencias entre 22 y 130 kW. Sus capacidades de lavado oscilan entre 50 y 450 t/h cuando la densidad aparente del material es de 1,6 t/m3, admitiendo tamaños máximos a la entrada de 150 a 300 mm.

Los trómeles lavadores reciben agua y áridos por la boca más alta, permitiendo el volteo, una atrición que libera las tierras y arcilla que acompañan a los áridos, saliendo limpios por la boca opuesta. Pueden ser de dos tipos: de simple corriente, para áridos de tamaños entre 180 y 400 mm, y a contracorriente, para tamaños entre 90 y 260 mm. El consumo de agua varía entre los 150 y los 2.000 m³/h, dependiendo del tamaño y si el flujo va en la misma dirección del material. A contracorriente se emplea menos, aunque su consumo de agua es menor.

El tiempo de permanencia del árido en el cilindro determina el efecto de lavado deseado. Este periodo, para áridos fáciles de lavar, está en torno al minuto y medio, pero puede más que duplicarse en el caso de que los materiales arcillosos o de aglomerados sea elevado, reduciéndose la capacidad de un 30 % a un 50 %. A más tiempo de permanencia, mayor índice de llenado, lo que aumenta la potencia empleada para mover el cilindro con una carga más grande.

Figura 3. Trómel de lavado. https://www.thprocess.com/es/productos/tromel-de-lavado-tl

Las ventajas del trómel son la ausencia de vibraciones, una construcción sencilla y barata, facilidad de separación con una instalación única. Como inconveniente destaca su capacidad relativamente pequeña y la dificultad de mantenimiento de las superficies de criba. La capacidad de lavado es baja, de 0,1 a 1,5 t/h/m2 por mm de abertura, debido a la reducida proporción de la superficie del tamiz que se utiliza durante su giro. Hoy en día se van sustituyendo por una combinación de trómel desenlodador y tamices vibrantes inclinados. Sin embargo, siguen montándose en grupos móviles de machaqueo y clasificación, de pequeña producción (hasta 35 t/h). Aún se conservan en el tratamiento de áridos para producir arenas sin finos y también a la salida del producto de molinos de bolas o barras. Se emplean en plantas de lavado de arenas e instalaciones de clasificación y reciclado. Otra aplicación es colocarlo a la salida de los molinos de bolas o barras, evitando que las piezas molturantes desgastadas pasen a las siguientes etapas. En los molinos autógenos y semiautógenos, el trómel retira los guijarros (pebbles) para llevarlos a trituración.

Se construyen dos tipos de trómeles. Los de construcción ligera, que no presentan revestimiento interior y con gran diámetro de boca, lo que supone un pequeño nivel de llenado y una baja potencia de accionamiento, con un bajo efecto de lavado. Los de construcción pesada tienen revestimiento interior desmontable, con un reducido diámetro de boca y elevada potencia. Estos últimos operan con un alto porcentaje de llenado y un alto efecto de lavado.

He grabado un vídeo explicativo sobre este tema que, espero, os sea útil.

Os dejo algunos vídeos explicativos, que espero sean de vuestro interés.

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación. Tecnología, diseño y aplicación. Ed. Rocas y Minerales, Madrid, 360 pp.

MARFANY, A. (2004). Tecnología de canteras y graveras. Fueyo Editores, Madrid, 525 pp.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos — ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La molienda en las instalaciones de tratamiento de áridos

Figura 1. Molino de bolas. https://carbosystem.com/como-funciona-un-molino-de-bolas/

El proceso de molienda es el último paso en la fragmentación del material después de la trituración. Se logra la fragmentación combinando fuerzas de compresión, corte, percusión y abrasión. Se estima que la molienda consume la mitad de la energía utilizada en los molinos.

El tamaño de salida en esta etapa de molienda puede variar entre milímetros y micras. La molienda gruesa produce tamaños de 1 a 2 mm, la molienda media produce tamaños de 200 a 500 micras, la molienda fina produce tamaños de 50 a 100 micras, y la molienda ultrafina produce tamaños de 10 micras.

Los molinos de rodamiento de carga, también conocidos simplemente como molinos, realizan este proceso tanto en seco como en húmedo. Estos incluyen cuerpos molturantes como barras, bolas, guijarros de sílex, o incluso fragmentos gruesos del material para ayudar en la fragmentación. Por lo tanto, una primera clasificación de los molinos se puede hacer según el tipo de cuerpos molturantes utilizados:

  • Molinos de barras: se emplean para moliendas más gruesas. Las barras se fabrican en acero de alto contenido en carbono y límite elástico.
  • Molinos de bolas: se emplean en moliendas finas. Las bolas se fabrican en acero de fundición o acero forjado aleado al Cr-Mo para ser resistentes al desgaste por impacto, o aleado al Ni para ser resistentes a la abrasión. A veces tienen formas cilíndricas o troncocónicas.
  • Molinos autógenos o semiautógenos: Los cuerpos de molienda pueden ser el propio mineral (AG) o un porcentaje de mineral y otro de bolas u otro tipo (SAG).
  • Molinos de pebbles: se utilizan cuerpos no metálicos; naturales o fabricados. Es el caso de guijarros de silex o porcelana para evitar la contaminación del mineral a causa del desgaste del acero.

La molienda se puede realizar por volcamiento, por agitación o por vibración, tal y como se puede observar en la Figura 2.

Figura 2. Tipos de molienda

La molienda por vía seca no debería tener un contenido de agua superior al 2%, ya que si el nivel de humedad supera un valor del 8 % al 9 %%, la pasta pegajosa resultante impedirá los choques y la abrasión, disminuyendo el rendimiento del proceso. El mejor rendimiento se logra con una humedad baja (1%), que ayuda a la rotura de los granos. La vía seca es necesaria cuando se trata de sustancias que reaccionan con el agua, como el clinker del cemento. Sin embargo, requiere una gran extensión de terreno para incluir un clasificador, transportadores, captadores de polvo, etc. Si la humedad es alta, es necesario efectuar un secado previo. Además, la molienda por vía seca aumenta la temperatura, por lo que no se pueden usar revestimientos de goma.

La molienda por vía húmeda presenta ventajas sobre la molienda en seco, siempre y cuando se cuente con agua y un adecuado tratamiento de esta tras el proceso de molienda. Además, requiere menos energía (1,3 veces menos), ya que el agua reduce la resistencia de los fragmentos. Sin embargo, la molienda por vía húmeda requiere un mayor consumo de revestimientos y cuerpos moledores debido a los ataques químicos por corrosión causados por los minerales con sulfuro (un desgaste hasta 6 – 8 veces superior a la vía seca por la corrosión). La molienda por vía semi-húmeda requiere un contenido de agua en el producto de entre un 2% y un 20%, mientras que la vía húmeda requiere un contenido de agua de entre un 30% y un 300%.

Los molinos pueden operar en forma discontinua o continua. En el modo intermitente, después de cargar material y cerrar el molino para que gire, se abre el molino para separar el material de los cuerpos molturantes. Este enfoque requiere máquinas pequeñas y una gran cantidad de manejo de materiales. Por lo tanto, es más común operar de manera continua, descargando el material y los cuerpos molturantes simultáneamente, deteniendo la operación solo para reabastecer los cuerpos molturantes o para mantenimiento. En la producción de áridos, se trabaja siempre de manera continua.

La molienda en circuito abierto tiene menos control sobre la distribución de tamaños de partículas en el producto, lo que resulta en una distribución más amplia. La velocidad de alimentación debe ser más baja y el tiempo de permanencia de las partículas debe ser más largo para garantizar una molienda adecuada. Esto lleva a un mayor porcentaje de partículas sobremolidas y un mayor consumo de energía (1,5 veces más que en el circuito cerrado).

Por otro lado, la molienda en circuito cerrado es la opción predominante en la industria minera. El producto se clasifica después de ser descargado del molino, lo que resulta en un menor consumo de energía en comparación con el circuito abierto, un mayor control sobre el tamaño máximo del producto y la capacidad de usar tanto la vía seca como la vía húmeda. Los molinos de bolas y los autógenos son los tipos más comúnmente utilizados en el circuito cerrado.

El revestimiento o blindaje del interior del tambor de los molinos se diseña para proteger la carcasa del molino contra la abrasión, la corrosión y el desgaste. Está compuesto de piezas intercambiables y debe ser resistente a impactos y tener la capacidad de minimizar el deslizamiento entre los cuerpos molturantes y el tambor. Los diseños con resaltes o nervios mejoran el movimiento de la carga y se fabrican en acero fundido o laminado por su alta resistencia, pero también pueden ser de cerámica. En el caso de molinos que traten materiales muy duros, es recomendable emplear caucho como revestimiento, siempre que la temperatura no supere los 80 °C y no haya contacto con reactivos de flotación.

Os dejo un vídeo en el que os explico este tema. Espero que os sea de interés.

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Método de Langefors y Kihlström para voladuras en banco de pequeño calibre

Figura 1. Esquema de una voladura en banco.

Las voladuras en banco de pequeño calibre son aquellas cuyo diámetro de barreno se encuentra entre 65 y 165 mm. Las cargas son cilíndricas alargadas, con una relación de longitud de carga mayor a 100 veces el diámetro. Suelen disponer de un tipo de explosivo en fondo y otro en columna y sus consumos específicos son relativamente bajos, con inclinaciones de barrenos de 1:2 a 1:3. Para este tipo de voladuras, se suele aplicar la técnica sueca de diseño y cálculo de voladuras, o teoría de Langefors y Kihlström (1963).

Según estos autores, la disposición de los barrenos, la cantidad de carga y la secuencia de rotura constituyen los principales problemas que deben determinarse en una voladura. Cuando la altura del banco supera dos veces el valor de la piedra (línea de mínima resistencia, también llamada burden), se usan cargas selectivas. En el fondo del barreno se requiere una cantidad de energía por unidad de longitud superior a unas 2,5 veces la energía necesaria para la rotura de la columna.

Figura 2. Voladura en banco. https://eadic.com/blog/entrada/voladuras-parametros-de-diseno/

La teoría de la escuela sueca se ha desarrollado para tipos de roca más o menos homogéneos, es decir, rocas duras y compactas. Además, trabaja con alturas de banco relativamente altas, típicas de la explotación de canteras, grandes excavaciones de obras públicas y minería a cielo abierto de pequeña escala. La teoría se desarrolló principalmente para rocas duras y diámetros pequeños.

La formulación que calcula la piedra se basa, en una primera aproximación, en que la piedra máxima es igual a 30 veces el diámetro del barreno, afectado por un coeficiente de corrección. Este coeficiente depende de la densidad y potencia relativa en peso del explosivo, de la relación entre el espaciamiento y la piedra, de la inclinación de los barrenos y de un factor de roca. El factor de roca sería la cantidad de explosivos, en kg, necesaria para arrancar un metro cúbico de roca. El factor de roca c = 0,4, se corresponde a un granito; en el caso de una caliza estará algo sobredimensionado, pero del lado de la seguridad. En cualquier caso, la piedra calculada tendrá un error de un 10%, por arriba o por abajo, que puede subsanarse en las siguientes voladuras.

Para aclarar cómo se realiza el diseño aplicando la técnica sueca, os dejo un problema resuelto que, espero, os sea de interés. También os dejo un nomograma original para el cálculo de la piedra teórica de una voladura según la formulación de Langefors y Kihlström (1963), elaborado en colaboración con el profesor Pedro Martínez Pagán.

Descargar (PDF, 268KB)

Referencias:

LANGEFORS, U.; KIHLSTRÖM, B. (1963). Técnica moderna de voladuras de rocas. Editorial URMO, Bilbao, 425 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plantas de áridos por vía seca

Figura 1. Planta de áridos. https://www.sotecma.es/maquinaria-planta-aridos/

Una instalación de procesado de áridos es una planta encargada de producir las distintas fracciones granulométricas necesarias para la onstrucción civil y otros sectores, como la cerámica, el vidrio y las fundiciones (Figura 1).

Existen dos tipos de plantas de procesamiento de áridos: vía seca y vía húmeda. Las plantas de vía húmeda suelen mejorar la finura y calidad del material, mientras que las de vía seca son más económicas y se utilizan en aplicaciones donde no se requiera una calidad excesiva en cuanto a las materias primas. En este artículo nos centramos en las plantas de áridos por vía seca.

Las plantas de áridos por vía seca tienen la ventaja de ser sencillas y flexibles, de tener un bajo costo de inversión y operación, una alta productividad y un ritmo elevado. Además, no requieren agua para su funcionamiento, lo que las hace fáciles de ubicar en cualquier terreno, y ocupan poco espacio. Sin embargo, su desventaja es la falta de capacidad para producir materiales finos bien clasificados y la poca eficiencia en la limpieza de los materiales más finos. Por lo tanto, deben tratar materiales secos con poca arcilla (canteras).

En este tipo de plantas se pueden distinguir tres procesos básicos, que son la trituración, la clasificación y otras operaciones auxiliares como la alimentación, transporte o almacenado.

Se pueden distinguir varios tipos de plantas de áridos por vía seca (Vázquez García, 1998):

  • Tipo 1: Planta de clasificación.
  • Tipo 2: Trituración primaria y clasificación.
  • Tipo 3: Trituración primaria, secundaria y clasificación.
  • Tipo 4: Trituración primaria, secundaria, terciaria y clasificación.

Veamos algunos esquemas de este tipo de plantas. No obstante, los procesos requeridos pueden hacer varias estos esquemas en función del tipo de necesidades.

Tipo 1. Planta de clasificación.

Este tipo de plantas se utiliza fundamentalmente en la producción de áridos para hormigones de obra, para zahorras en subbases de carreteras y para gravas empleadas en rellenos. Se alimenta con materiales de canteras con una baja proporción de arcilla y material suelto. Los materiales grandes (tamaños mayores a 100 mm) generalmente se descartan como estériles. Las Figuras 2 y 3 muestran los esquemas y diagramas de flujo correspondientes.

Figura 2. Esquema de una planta de clasificación por vía seca. Elaboración propia, basado en Vázquez García (1998).

 

Figura 3. Esquema de flujos de una planta de clasificación en seco. Elaboración propia, basado en Vázquez García (1998).

 

Tipo 2. Planta de trituración primaria y clasificación.

Las aplicaciones de este tipo de planta son parecidas al tipo 1, pero añadiendo la trituración, siempre que sea rentable. Se utilizan en zahorras para subbases y bases de carreteras y en suelos-cementos y gravas-cementos. En las Figuras 4 y 5 se reflejan los esquemas de este tipo de planta en circuito abierto. No obstante, se podría diseñar en circuito cerrado la trituración interponiendo una criba a través de unas cintas transportadoras.

Figura 4. Esquema de una planta de trituración primaria y clasificación en seco (circuito abierto). Elaboración propia, basado en Vázquez García (1998).

 

Figura 5. Esquema de flujos de una planta de trituración primaria y clasificación en seco (circuito abierto). Elaboración propia, basado en Vázquez García (1998).

Tipo 3. Planta de trituración primaria, secundaria y clasificación.

Se trata del sistema más empleado en la producción de áridos. Sus aplicaciones habituales son subbases y bases para carreteras, grava-cemento y suelo-cemento, aglomerados asfálticos y hormigones. Se trata de introducir una trituración secundaria a la planta tipo 2. Esta trituración adicional permite aprovechar bloques de gran tamaño y permite obtener fracciones de rango de gravilla (30/40 mm) en el caso de utilizar un triturador de cono. Suelen intercalarse silos o depósitos intermedios debido a que la producción de la trituración primaria suele ser mayor a la de la secundaria. La trituración primaria suele ser en circuito abierto y la secundaria, en circulación cerrada (Figuras 6 y 7).

 

Figura 6. Esquema de una planta de trituración primaria, secundaria y clasificación en seco (circuito cerrado). Elaboración propia, basado en Vázquez García (1998).

 

Figura 7. Esquema de flujos de una planta de trituración primaria, secundaria y clasificación en seco (circuito cerrado). Elaboración propia, basado en Vázquez García (1998).

Tipo 4. Planta de trituración primaria, secundaria, terciaria y clasificación.

Se trata de una planta parecida al tipo 3 donde se introduce una trituración terciaria, normalmente con conos o molinos de impactos o martillos para la producción de arenas. Es útil para la producción de finos. La trituración secundaria y terciaria se realiza en circuito cerrado.

Os he grabado un vídeo sobre este tema, que espero, sea de vuestro interés.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

VÁZQUEZ GARCÍA, A. (1998). Plantas fijas para el tratamiento de áridos, en LÓPEZ JIMENO (ed.): Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, pp. 313-331.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trituradoras de cilindros

Figura 1. Trituradora de cilindros. https://m.spanish.alibaba.com/p-detail/2015-Baichy-hot-selling-double-roller-60189900655.html

Las trituradoras de cilindros son equipos que fragmentan materiales mediante compresión entre dos cilindros paralelos y de igual diámetro, con una pequeña separación que permite el reglaje de la máquina. Antes del surgimiento de las trituradoras de cono, estas trituradoras eran muy comunes, pero presentan dos desventajas importantes: una baja capacidad y un desgaste rápido de la superficie del cilindro al triturar rocas abrasivas.

Los cilindros giran en direcciones opuestas, facilitando el transporte del material hacia la zona de trituración. Se controlan mediante motores eléctricos independientes para cada cilindro, conectados mediante una rueda dentada. Uno de los cilindros está instalado con un buje fijo, mientras que el otro está montado sobre un buje deslizante que se puede ajustar en posición respecto al primero. Por lo general, este bloque deslizante trabaja contra muelles en compresión, lo que brinda un sistema de seguridad contra sobrecargas o materiales intriturables. Los cilindros pueden ser lisos, estriados o dentados.

El tamaño de la salida está limitado por la separación entre los cilindros, mientras que la intensidad de fragmentación depende principalmente del diámetro y de la velocidad de giro de los cilindros. Como todas las trituradoras que funcionan de manera continua, las trituradoras de cilindros ofrecen buen rendimiento y pueden alcanzar fácilmente una producción de 1.000 t/h, aunque tienen bajas relaciones de reducción, generalmente alrededor de 5:1. Si los cilindros están dentados, son efectivos en rocas blandas y pegajosas.

Trituradoras de cilindros dentados

Los dientes en los cilindros provocan una cizalladura en el material, lo que ayuda en la fragmentación del material junto con la compresión. Estas trituradoras son comúnmente utilizadas en canteras al aire libre en la trituración primaria de “todo-uno”, pero también se encuentran en etapas secundarias o terciarias. En estas etapas secundarias, producen tamaños de producto inferiores a 50 mm. Tienen una capacidad de producción entre 50 y 5.000 t/h, aceptando bloques de hasta 1.700 mm en los equipos más grandes. La relación de reducción varía entre 3:1 y 6:1. Normalmente, el 80% a 85% de la producción pasa a través de una criba con un tamaño de abertura igual al reglaje.

Figura 2. Trituradora de rodillos dentados. https://litech-eu.com/es/roll-crusher/

Las trituradoras de cilindros dentados ofrecen la robustez, la simplicidad y la fácil mantenibilidad como principales ventajas. Son más económicas que las trituradoras de mandíbulas y manejan materiales húmedos, pegajosos y frágiles, sin problemas. Además, son equipos de altura reducida y cuentan con un dispositivo de seguridad eficaz. Proporcionan granulometrías regulares y generan muy poco polvo.

Sin embargo, no se recomiendan para materiales muy duros o abrasivos. La baja razón de reducción (aproximadamente 4:1) requiere varias etapas de trituración y la alimentación no permite una acumulación de material sobre los cilindros, lo que puede causar problemas de ahogamiento y producción de material fino. Para lograr buenas razones de reducción, se requieren diámetros de cilindro mayores en relación con el tamaño de las partículas de alimentación.

Trituradoras de cilindros lisos

La trituradora de rodillos presenta una estructura similar a la de los cilindros dentados. A veces, el cilindro presenta acanaladuras que aumentan la fricción y facilitan el desplazamiento del material hacia la zona de compresión y trituración. La alimentación puede ser a tragante lleno, de forma que siempre exista material sobre los rodillos. De esta forma, el equipo trabaja a su máxima capacidad, con el inconveniente de generar mayor cantidad de finos. Si se alimenta en una capa (Figura 3), entonces la compresión del material es casi pura entre los cilindros y se reduce la cantidad de finos, aunque entonces tenemos menor producción.

Figura 3. Alimentación en una capa. https://ocw.bib.upct.es/course/view.php?id=178&topic=3

Los trituradores con rodillos son eficientes en la reducción de materiales blandos o de dureza media, con una razón de reducción de 5:1 y capacidades de hasta 250 t/h. Se utilizan en etapas secundarias, terciarias y molienda gruesa (2-3 mm), y compiten con molinos de martillos en materiales blandos y conos en materiales duros y abrasivos. Normalmente, el paso del producto obtenido será de un 85 % por la criba de abertura igual al reglaje.

Sin embargo, debido a su razón de reducción en torno a 6:1 trabajando a tragante lleno, estos equipos generan una cantidad excesiva de finos, por lo que no se recomiendan para materiales muy duros o abrasivos. Pero, ofrecen granulometrías regulares y sin fragmentos grandes o finos si la alimentación es a una sola capa y en circuito cerrado.

Para los que estéis interesados, os dejo un problema resuelto sobre el tamaño máximo del material que puede alimentar a una trituradora de cilindros lisos: https://victoryepes.blogs.upv.es/2022/11/29/tamano-maximo-del-material-que-puede-alimentar-a-una-trituradora-de-cilindros-lisos/

Os dejo un par de vídeos que creo os pueden dar una visión de este tipo de trituradoras. Espero que os gusten.

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Capacidad de producción de una machacadora de mandíbulas. Fórmula de Gieskieng

Figura 1. Animación del funcionamiento de una machacadora de mandíbulas. https://www.pinterest.es/pin/858639485203690372/

Las machacadoras de mandíbulas, están diseñadas para superar las necesidades de trituración primaria de los clientes de los sectores de canteras, minería y reciclaje (Figura 1). Se aplica principalmente en la trituración gruesa y media de las materias de resistencia a compresión no mayor a 320 MPa, caracterizada por alta relación de reducción, alta producción, granulosidad homogénea, estructura sencilla, funcionamiento fiable, mantenimiento fácil, coste de operación económico, etc.

Para estimar la capacidad su producción, se puede consultar los datos de los fabricantes o bien se puede estimar con fórmulas empíricas. Entre dichas fórmulas cabe mencionar la propuesta por Gieskieng (1950).

En la Figura 2 se aporta un esquema del profesor Pedro Martínez Pagán (Universidad Politécnica de Cartagena) de una machacadora de mandíbulas.

Figura 2. Esquema de machacadora de mandíbulas (Martínez, 2010)

Os paso un problema resuelto sobre el cálculo de la capacidad de una machacadora utilizando la fórmula empírica de Gieskieng. Espero que os sea de interés.

Descargar (PDF, 432KB)

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación: tecnología, diseño y aplicación. Editorial Rocas y Minerales. 1ª edición. Fueyo Editores. Madrid, 371 pp. ISBN: 84-923128-2-3.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Energía necesaria para la fragmentación del material: Ley de Bond (1951)

En el procesamiento de áridos se necesita energía para reducir el tamaño del material que entra en una máquina de fragmentación. El cálculo de la energía necesaria resulta de interés, no solo desde el punto de vista teórico, sino también para estimar el coste de la energía en la operación.

Cuando se aplica una fuerza para romper una partícula, al principio se deforma y se almacena la energía aplicada en el material. Pero si la fuerza sobrepasa el límite de resistencia, la partícula se rompe consumiendo cierta energía, transformándose la sobrante en calor, ruido y energía cinética, entre otras.

Existen distintas leyes que proporcionan la energía necesaria para una operación de fragmentación determinada. La Ley de Rittinger es adecuada para partículas finas, de diámetro inferior a 74 μm, y dice que el área de la nueva superficie producida por el nuevo machaqueo o molienda es directamente proporcional al trabajo útil consumido. La Ley de Kick se aplica a partículas gruesas, de diámetro mayor a 10 cm, y dice que el trabajo requerido es directamente proporcional a la reducción de volumen entre las partículas antes y después de la operación de fragmentación o molienda.

Sin embargo, F. C. Bond (1951), a partir del estudio de un gran número de instalaciones, dedujo su Ley de Bond, que dice que el trabajo consumido es proporcional a la nueva longitud de fisura producida por la rotura de las partículas, pues una vez creada la fisura, la roca parte. Esta ley cubre el vacío de las otras dos leyes anteriores, para diámetros superiores a 74 μm y menores a 10 cm.

Para que se pueda entender esta ley y otros conceptos como el de razón de reducción o el de curva granulométrica, os dejo un problema resuelto y varios vídeos que espero os sea de interés.

Descargar (PDF, 238KB)

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación: tecnología, diseño y aplicación. Editorial Rocas y Minerales. 1ª edición. Fueyo Editores. Madrid, 371 pp. ISBN: 84-923128-2-3.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Secador de áridos en una planta asfáltica en caliente

Figura 1. Tambor secador. Imagen: V. Yepes

Las plantas asfálticas en caliente disponen de un tambor secador que seca los áridos y eleva su temperatura, hasta los 150 a 200ºC, para que en el mezclador queden perfectamente envueltos en el ligante. La elevación de la temperatura permite el secado (humedad < 1% en peso) y la eliminación del polvo de los áridos. El secador debe regularse para que la combustión sea completa y garantice la ausencia de humo negro en la chimenea. La eficacia de un secador depende del tipo de quemador, del sistema de alimentación, de la circulación y evacuación de áridos, del grado de humedad de los áridos, del diámetro y longitud del tambor, entre otros factores. Los rendimientos dependen en gran medida de la humedad de los áridos, donde el árido fino es el que más humedad retiene.

 

Figura 2. Secador y ciclón extractor de una instalación de fabricación de mezclas bituminosas

En las plantas discontinuas y en las continuas convencionales, el tambor secador consiste habitualmente en un cilindro metálico de gran diámetro y una longitud de 3 o 4 diámetros (hasta 2 m de diámetro y 15 m de longitud). Este tubo gira sobre su eje a una velocidad de 5 a 15 revoluciones por minuto. Los áridos entran a contracorriente: unas paletas arrastran los áridos hacia la llama y los gases calientes del quemador de fuel, que se encuentra en el extremo opuesto del cilindro (Figura 2). Un sistema de ciclones fuerza el aire para permitir la salida de vapor de agua. En las plantas de tambor secador-mezclador, el secado de los áridos se realiza junto con la mezcla. El diseño de tambores secadores mezcladores largos, con longitudes mayores a 5 diámetros, permite la extracción del calor de los gases de combustión hasta temperaturas de 12ºC por encima de la temperatura de la mezcla, evitando el deterioro del ligante.

Se aconseja que la temperatura de los áridos a la llegada del quemador no supere en más de 10ºC a la del ligante, y que el conjunto no sobrepase 15ºC de la máxima de envuelta del ligante, calculada de la viscosidad óptima de fabricación de la mezcla. Si no fuera así, existirá un deterioro en las características del betún debido a una brusca oxidación por choque térmico y una merma de las prestaciones de la mezcla.

Figura 3. Secador de áridos

Os dejo a continuación algún vídeo al respecto de este elemento.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Voladura en una cantera de áridos

http://mti-minas-valencia.blogspot.com.es/

A continuación os dejo un vídeo de Georock S.L.  donde se explica la voladura en una cantera de áridos en San Fulgencio (Alicante). Una vez visionado, será fácil responder a las siguientes preguntas:

          1. ¿Qué tipo de material se extrae en esta cantera?
          2. ¿Qué altura de banco tiene esta cantera?
          3. ¿Qué dos tipos de explosivo se usan?
          4. ¿Qué separación existe entre los taladros?, ¿qué diámetro tienen?
          5. ¿Qué consumo de explosivo se necesita?
          6. ¿Cuál es la velocidad de detonación en este caso?

En este otro vídeo podéis ver el efecto de los microrretardos:

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.