Proceso Analítico Jerárquico (Analytic Hierarchy Process, AHP)

Figura 1. Thomas L. Saaty (1926-2017)

En numerosas ocasiones contamos con muy poca información o tenemos que tomar una decisión teniendo en cuenta aspectos cualitativos que son difíciles de valorar. Para solucionar este tipo de problemas, muy habituales en situaciones reales, el profesor Thomas L. Saaty propuso en la década de los 70 un método denominado Analytic Hierarchy Process (AHP), que se ha traducido al español como Proceso Analítico Jerárquico. Este método multiatributo, nacido como respuesta a problemas concretos de toma de decisiones en el Departamento de Defensa de los Estados Unidos, hoy día se aplica habitualmente a casi todos los ámbitos de la empresa, la economía o la investigación de operaciones, entre otros muchos.

En apretada síntesis, AHP es un método que selecciona alternativas en función de una serie de criterios o variables, normalmente jerarquizados, los cuales suelen entrar en conflicto. En esta estructura jerárquica, el objetivo final se encuentra en el nivel más elevado, y los criterios y subcriterios en los niveles inferiores, tal y como se muestra en la Figura 2. Para que el método sea eficaz, es fundamental elegir bien los criterios y subcriterios, los cuales deben estar muy bien definidos, ser relevantes y mutuamente excluyentes (independencia entre ellos). Es importante  que el número de criterios y subcriterios en cada nivel no sea superior a 7, para evitar excesivas comparaciones a pares.

Figura 2. Ejemplo de estructura jerárquica AHP

Una vez definida la estructura jerárquica, se comparan los criterios de cada grupo del mismo nivel jerárquico y la comparación directa por pares de las alternativas respecto a los criterios del nivel inferior. Para ello se utilizan matrices de comparación pareadas usando una Escala Fundamental (Tabla 1). Esta es la clave del método, usar una escala de comparación por pares, puesto que el cerebro humano está especialmente bien diseñado para comparar dos criterios o alternativas entre sí, pero menos cuando tiene que hacer comparaciones conjuntas. En efecto, la Ley de Weber-Fechner establece que el menor cambio discernible en la magnitud de un estímulo es proporcional a la magnitud de dicho estímulo. Como la relación entre el estímulo y la percepción corresponde a una escala logarítmica, si un estímulo crece en progresión geométrica, la percepción evolucionará como una progresión aritmética. Es por ello que AHP utiliza una escala fundamental del 1 al 9 que ha sido satisfactoria en comprobaciones empíricas realizadas en situaciones reales muy diversas.

Tabla 1. Escala fundamental de comparación por pares (Saaty, 1980)

La comparación de las diferentes alternativas respecto al criterio del nivel inferior de la estructura jerárquica, como la comparación de los diferentes criterios de un mismo nivel jerárquico dan lugar a una matriz  cuadrada denominada matriz de decisión. Esta matriz cumple con las propiedades de reciprocidad (si aij=x, entonces aji=1/x), homogeneidad (si i y j son igualmente importantes, aij=aji=1, y además, aii= 1 para todo i), y consistencia (la matriz no debe contener contradicciones en la valoración realizada). La consistencia se obtiene mediante el índice de consistencia (Consistency Index, CI) donde λmax es el máximo autovalor y n es la dimensión de la matriz de decisión. Un índice de consistencia igual a cero significa que la consistencia es completa. Una vez obtenido CI, se obtiene la proporción de consistencia (Consistency Ratio, CR) siendo aceptado siempre que no supere los valores indicados en la Tabla 3. Si en una matriz se supera el CR máximo, hay que revisar las ponderaciones.

Donde RI es el índice aleatorio, que indica la consistencia de una matriz aleatoria (Tabla 2):

Tabla 2. Índice aleatorio RI

 

Tabla 3. Porcentajes máximos del ratio de consistencia CR

Una vez verificada la consistencia, se obtienen los pesos, que representan la importancia relativa de cada criterio o las prioridades de las diferentes alternativas respecto a un determinado criterio. Para ello, el AHP original utiliza el método de los autovalores, donde hay que resolver la siguiente ecuación:

donde A representa la matriz de comparación, w el autovector o vector de preferencia, y λmax el autovalor.

A continuación os dejo algunos vídeos de interés donde se explica el método AHP y sus aplicaciones. Espero que os sean de utilidad.

Referencias:

Saaty, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sustainable assessment of retaining walls through an active learning method considering multiple stakeholders

ABSTRACT: The sustainability approach has changed the modern society. Currently, the sustainability takes into consideration, not only the economic and environmental facets, but also the social facet. Taking into account the three facets of sustainability, this paper shows the application of a method of active learning to assess the sustainability of three real retaining walls. A group of 29 students of the Master of Science in Planning and Management in Civil Engineering at the Universitat Politècnica de València has experienced this assessment. The method followed was proposed by academics of the School of Civil Engineering of the Universitat Politècnica de València (Spain) and Universidad de La Frontera (Chile). An approach multi-criteria and a clusters analysis are part of method, which allows developing a participative process with different points of view about the sustainability. The outcomes show that of this way students can forecast impacts from of the integration of design, planning and the location context of the infrastructure. Result evidence that personal values of each student influences the election of the optimal alternative. The paper also identifies the need to strengthen the conceptualization of social criteria in the students training.

KEYWORDS: Infrastructure, Education, Cluster analysis, Analytic hierarchy process, Civil engineering, Sustainability

REFERENCE:

SIERRA-VARELA, L.; YEPES, V.; PELLICER, E. (2017). Sustainable assessment of retaining walls through an active learning method considering multiple stakeholders. Proceedings of the Ninth International Structural Engineering and Construction Conference, Valencia, Spain, July 24-July 29.  doi: 10.14455/ISEC.res.2017.51

Descargar (PDF, 276KB)

 

Appraisal of infrastructure sustainability by graduate students using an active-learning method

file.FeedFileLoaderAppraisal of infrastructure sustainability by graduate students using an active-learning method

Abstract:

Currently many university programs in the construction field do not take sustainability into account from a holistic viewpoint. This may cause a lack of sensitivity from future professionals concerning sustainability. Academics in construction must endeavor to instill a culture of sustainability in the curricula of their students. Therefore, this study proposes an active-learning method that allows graduate students in the construction field to take into consideration infrastructure sustainability from a variety of perspectives in a participatory process. The students applied an analytical hierarchical process to determine the appraisal degree of each criterion. A cluster statistical analysis was carried out, aiming to identify the profiles that influence decision-making. This method was applied to two classes of graduate students enrolled in the Master of Planning and Management in Civil Engineering at the Universitat Politècnica de València. This method identified a correlation between the profiles toward sustainability and the characteristics of the chosen infrastructure. It was also found that the method fulfills educational purposes: most of the students obtained more than 65% of the target learning outcomes. This approach promotes awareness and sensitivity to different points of view of the sustainability in a participatory context. It can be replicated in other contexts so as to obtain appraisals regarding various criteria that help enhance decision-making.

Highlights

  • Proposal of a method that allows students to consider infrastructure sustainability.
  • Participatory learning method that promotes integral sustainability.
  • Students profiles’ identification influencing decision making toward sustainability.
  • The profiles of evaluators influence the prioritization among alternatives.

Reference:

PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010

Una aproximación cognitiva a la optimización multiobjetivo de estructuras de hormigón

BBA027Acaban de publicarnos un artículo muy novedoso sobre la aproximación cognitiva a los problemas de optimización multiobjetivo de las estructuras de hormigón. La revista es Archives of Civil and Mechanical Engineering, que es una revista de alto impacto en el campo de la ingeniería civil, indexada en el JCR en el primer cuartil. El resultado de combinar técnicas de decisión multicriterio junto con la optimización multiobjetivo supone una auténtica revolución en la forma de abordar el diseño de las estructuras. Ya no basta con aplicar la experiencia, la imaginación y las normas para proyectar una estructura. Se hace necesario abordar el problema desde el origen, considerando múltiples perspectivas y buscando soluciones que optimicen a la vez aspectos como los costes, la seguridad, la sostenibilidad, los riesgos laborales, la durabilidad, la estética y tantos otros.

El artículo plantea la metodología básica necesaria para establecer la resolución de este tipo de problemas. Sin embargo se deben potenciar los estudios que permitan valorar los aspectos más subjetivos que intervienen en la decisión de la mejor opción de las posibles. Esta línea de investigación se encuadra dentro del proyecto de investigación BRIDLIFE, del cual soy investigador principal. Además, supone un ejemplo de colaboración con otras universidades, en este caso con la Universidad de Zaragoza.

Referencia:

YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001

Abstract:

This paper proposes a cognitive approach for analyzing and reducing the Pareto optimal set for multi-objective optimization (MOO) of structural problems by means of jointly incorporating subjective and objective aspects. The approach provides improved knowledge on the decision-making process and makes it possible for the actors involved in the resolution process and its integrated systems to learn from the experience. The methodology consists of four steps: (i) the construction of the Pareto set using MOO models; (ii) the filtering of the Pareto set by compromise programming methods; (iii) the selection of the preferred solutions, utilizing the relative importance of criteria and the Analytic Hierarchy Process (AHP); (iv) the extraction of the relevant knowledge derived from the resolution process. A case study on the reinforced concrete (RC) I-beam has been included to illustrate the methodology. The compromise solutions are obtained through the objectives of economic feasibility, structural safety, and environmental sustainability criteria. The approach further identifies the patterns of behavior and critical points of the resolution process which reflect the relevant knowledge derived from the cognitive perspective. Results indicated that the solutions selected increased the number of years of service life. The procedure produced durable and ecological structures without price trade-offs.