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Abstract: The advancement toward sustainable infrastructure presents complex multi-objective
optimization (MOO) challenges. This paper expands the current understanding of design frame-
works that balance cost, environmental impacts, social factors, and structural integrity. Integrating
MOO with multi-criteria decision-making (MCDM), the study targets enhancements in life cycle
sustainability for complex engineering projects using precast modular road frames. Three advanced
evolutionary algorithms—NSGA-II, NSGA-III, and RVEA—are optimized and deployed to address
sustainability objectives under performance constraints. The efficacy of these algorithms is gauged
through a comparative analysis, and a robust MCDM approach is applied to nine non-dominated
solutions, employing SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR decision-making techniques.
An entropy theory-based method ensures systematic, unbiased criteria weighting, augmenting the
framework’s capacity to pinpoint designs balancing life cycle sustainability. The results reveal that
NSGA-III is the algorithm converging towards the most cost-effective solutions, surpassing NSGA-II
and RVEA by 21.11% and 10.07%, respectively, while maintaining balanced environmental and social
impacts. The RVEA achieves up to 15.94% greater environmental efficiency than its counterparts.
The analysis of non-dominated solutions identifies the A4 design, utilizing 35 MPa concrete and
B500S steel, as the most sustainable alternative across 80% of decision-making algorithms. The rank-
ing correlation coefficients above 0.94 demonstrate consistency among decision-making techniques,
underscoring the robustness of the integrated MOO and MCDM framework. The results in this
paper expand the understanding of the applicability of novel techniques for enhancing engineering
practices and advocate for a comprehensive strategy that employs advanced MOO algorithms and
MCDM to enhance sustainable infrastructure development.

Keywords: multi-objective optimization; multi-criteria decision-making; NSGA-II; NSGA-III; RVEA;
SAW; FUCA; TOPSIS; PROMETHEE; VIKOR
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1. Introduction

Transportation infrastructure stands as the most pivotal component of a nation’s core
infrastructure, often representing its largest subcomponent and serving as a critical foun-
dation for economic prosperity and societal welfare. The allocation of resources towards
this sector is perceived as a direct contribution to a nation’s economic and social growth,
evidenced by leading institutions such as the World Bank allocating substantial financial
support to transportation infrastructure, surpassing contributions towards health or educa-
tion [1]. This strategic emphasis highlights transportation infrastructure’s crucial role in
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catalyzing societal progression. Amidst an increasingly marked transition towards sustain-
able development, the investment strategy in transportation infrastructure now necessitates
a holistic life cycle evaluation [2]. This approach ensures that fiscal commitments address
immediate needs and champion enduring, sustainable solutions that protect future genera-
tions’ interests. It integrates environmental sustainability and global interconnectivity into
the essence of infrastructure development, fostering a paradigm that balances immediate
benefits with long-term viability.

Within the crucial role of transportation infrastructure, the construction sector stands
as a dynamic catalyst, essential for the fruition of these projects. The construction industry
is poised for substantial growth, with forecasts indicating a surge beyond 14 trillion dollars
globally in the ensuing year, significantly influencing the global economic landscape [3].
This expansion illustrates the industry’s immense scale and its vital role in propelling
economic advancement through the generation of employment opportunities, both during
the design and construction phases and in the ongoing maintenance of infrastructure. Its
operation strengthens job prospects within the sector and related fields, underscoring the
construction industry’s contribution to broad-based economic development.

However, positioned as one of the most resource-intensive and environmentally
impacting sectors, the construction industry is under increasing scrutiny to reform anti-
quated practices in favor of more sustainable approaches [4]. This juxtaposition of the
industry’s considerable economic contributions against its environmental and social impli-
cations has sparked a critical examination. Acknowledging this challenge has prompted a
realignment of capital investment strategies, prioritizing incorporating life cycle sustain-
ability—encompassing economic, environmental, and social considerations—right from
the conceptual stages of transportation infrastructure projects [5]. This shift is not merely
a nod to ethical standards but emerges as a strategic necessity to secure investment and
champion the cause of sustainable development. The construction sector is compelled to
embrace a comprehensive strategy that transcends traditional methodologies. Adopting an
integrated approach in designing highly efficient infrastructure is instrumental in realizing
economically sound, environmentally sustainable, and socially equitable projects, marking
a significant stride towards a balanced development paradigm.

Adopting an integrated framework incorporating sustainable design strategies from
the outset is essential for aligning transportation infrastructure construction with overarch-
ing sustainable development objectives [6]. This strategy ensures that efforts in construction
engineering are developed with a comprehensive outlook, evaluating aspects such as eco-
nomic viability, environmental preservation, and social responsibility. Embracing this
broader framework, which considers the project’s entire life cycle, can stimulate innova-
tion and foster more profound collaboration among all stakeholders. Moreover, it sets a
foundational standard for integrating life cycle sustainability considerations, facilitating
more enlightened decision-making throughout the critical phases of conception, design,
and funding acquisition of transportation infrastructure projects. This refined approach
ensures the immediate project needs are met while incorporating a shift towards more
responsible and forward-thinking infrastructure development practices.

Embracing a life cycle standpoint necessitates the evaluation and objective quantifica-
tion of environmental, social, and economic impacts spanning from a project’s inception to
its decommissioning. This perspective fosters sensitive material and energy use, empha-
sizing long-term benefits for communities and the environment. Applying advanced life
cycle and structural mathematical modeling signifies a pivotal transition from traditional
to innovative design strategies. This shift promotes the early integration of optimization
and decision-making techniques, significantly enhancing the alignment of infrastructure
projects with sustainable development goals. Such an approach underlines the importance
of a holistic view in infrastructure development, ensuring that projects are not only de-
signed for immediate functionality under economic viability constraints but also for their
long-term sustainability, operational efficiency, and positive societal impact throughout
their entire life cycle.
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The transition from single-objective optimization (SOO) to MOO in the context of
structural design optimization signifies a substantial advancement [7–9]. MOO enables
the simultaneous evaluation of multiple critical factors, including economic efficiency,
environmental sustainability, and social impact. This holistic approach broadens the scope
of design considerations and ensures a deeper congruence between infrastructure design
and overarching sustainable development purposes. The advancement of MOO strategies
represents a paradigmatic evolution, enriching the design process with a multifaceted
perspective that better captures the complexity of real-world engineering challenges.

In Ruiz-Velez et al. [10], a novel design strategy is presented and applied to a real-
world challenge in construction engineering. The study specifically focuses on the life cycle
design optimization of reinforced concrete precast modular frames (RCPMF). Building
on previous SOO results for the precast and cast-in-place typologies [11,12], the study
introduces a customized non-dominated sorting genetic algorithm II (NSGA-II), enhanced
with three novel repair operators, to navigate the complex handling of the mixed integer
programming (MIP) during the optimization process [13]. Furthermore, the framework
proposed in the study is particularly relevant for its integration with MCDM techniques,
computing the criteria weights via an entropy-based approach and applying the simple
additive weighting (SAW) and faire un choix adéquat (FUCA) methods for assessing the
optimization results [14].

The statistical-based repair operator was identified as the preeminent algorithm for
navigating the hurdles intrinsic to the MIP nature of the RCPMF optimization problem. De-
spite the inherent differences in the strategies for scoring and evaluating decision-making
alternatives, the SAW and FUCA techniques ranked the optimal solutions similarly. This
consistency attests to the capabilities of the proposed structural design framework and
the potential of integrating MOO and MCDM. As a result, the study introduced and
demonstrated a pioneering framework that leverages the strengths of MOO and MCDM
to elevate the sustainability and efficacy of structural engineering projects. The research
strongly supports deploying this integrative strategy in practical structural engineering
scenarios, particularly those aimed at enhancing the sustainability of transportation infras-
tructure projects.

Integrating MOO with MCDM techniques presents a forward-looking strategy for
refining structural design frameworks considering the life cycle implications of construction
projects. The case study on optimizing the structural design of RCPMF sets a reliable
standard for assessing the effectiveness of sophisticated design strategies in transportation
infrastructure development. The results of exploring the NSGA-II algorithm alongside
SAW and FUCA techniques underscored the potential benefits of integrating MOO and
MCDM for addressing the complex task of embedding sustainability into structural design
engineering, representing an important stride towards further analytical advancements.
Consequently, this initiates a pivotal conversation about exploring and evaluating the
performance of additional MOO algorithms and MCDM approaches. This scrutiny seeks
to assess the framework’s efficacy and broaden its relevance throughout the structural
design domain.

This paper focuses on the development stage of precast modular frames, adopting
a comprehensive perspective on life cycle sustainability. By integrating optimization
processes early in the foundational phase, the framework is conceived to significantly
influence the entire life cycle—from inception to decommissioning—ensuring that every
design decision upholds long-term sustainability objectives [15]. The research builds
substantially upon previous efforts by incorporating a broad spectrum of MOO algorithms
and MCDM techniques, enhancing the framework’s ability to navigate the complex and
multifaceted challenges common to diverse modern engineering projects and boosting its
applicability and robustness.

Furthermore, by embedding life cycle sustainability objectives directly into the opti-
mization process, aligning these objectives with decision-making criteria, and utilizing an
entropy theory-based weighting method, the framework ensures robustness and impar-
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tiality. This holistic approach deepens the understanding of life cycle sustainability and
improves the replicability and reliability of outcomes across various engineering domains,
fostering real-world scalability for these advanced practices. The research showcases the
practical implementation of the MOO and MCDM integrated framework, closely aligning
with established best practices for sustainable infrastructure development.

Within this context, the present research implements and critically evaluates the perfor-
mance of novel MOO algorithms and MCDM techniques for enhancing structural design ef-
forts. Three optimization algorithms and five decision-making techniques are implemented
within the integrated design framework and then employed to solve the RCPMF prob-
lem. This paper aims to comprehensively characterize and enhance the integrated design
strategy’s capabilities for solving practical engineering challenges. This paper introduces
and evaluates the performance of three novel MOO algorithms, NSGA-II, non-dominated
sorting genetic algorithm III (NSGA-III), and reference vector guided evolutionary algo-
rithm (RVEA), for solving the MOO RCPMF problem [16–19]. The statistical-based repair
operator, previously identified as the best-performing repair algorithm, is implemented
in all of them. This paper further innovates by substantially extending the scope of the
MCDM problem by comparing five different decision-making techniques: SAW, FUCA,
technique for order of preference by similarity to ideal solution (TOPSIS), preference rank-
ing organization method for enrichment evaluation (PROMETHEE), and “visekriterijumska
optimizacija i kompromisno resenje” (VIKOR), Serbian for multi-criteria optimization and
compromise solution [20,21]. This exhaustive examination improves the understanding of
the MOO and MCDM integrated life cycle design strategy’s suitability and efficiency in
promoting sustainable development within transportation infrastructure.

The NSGA-III algorithm is identified as the best-performing MOO strategy across all
objective functions. While differing in scoring and evaluation procedures, the decision-
making strategies continue to rank the MCDM problem alternatives similarly. These
findings are congruent with what was described in previous research, displaying a robust
array of decision-making techniques to be considered when assessing transportation in-
frastructure development. The results of this study further validate the design framework
combining advanced MOO algorithms with MCDM techniques and provide new insights
into its application and performance.

The subsequent sections detail and thoroughly explain the methodologies utilized
in this study. Section 2.1 provides an overview of the RCPMF problem which serves as
a standard for evaluating the effectiveness of the optimization algorithms. Section 2.2
elaborates on the operation and tailored adjustments of the optimization algorithms, while
Section 2.3 offers similar clarification for the decision-making techniques. The analysis and
interpretation of the results are presented in Section 3, enabling the formulation of relevant
conclusions highlighted in Section 4.

2. Methods

This section provides a straightforward overview of the RCPMF problem used to
assess the performance of optimization algorithms within the integrated MOO and MCDM
life cycle design framework. Furthermore, it thoroughly delineates the optimization algo-
rithms and defines the criteria weighting procedure and the decision-making techniques
implemented in this research.

2.1. Optimization Problem Overview

This study builds upon the MOO problem in Ruiz-Vélez et al. [10], focusing on the
structural design of a 10-meter-span and 5-meter-height RCPMF constructed 5 m deep
into a roadway embankment. The MOO process involves determining a set of values for n
variables constituting a solution vector X⃗ efficient per its corresponding values for prede-
fined objective functions. These functions strive to achieve life cycle sustainability while
adhering to constraints that prioritize structural integrity and performance. The ultimate
aim is to navigate the solution space effectively, uncovering non-dominated solutions that
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simultaneously minimize k objective functions and meet m constraints. This approach
follows the standard framework for MOO problems, as detailed by Equations (1)–(3).

X⃗ = x1, x2, . . . , xn (1)

min( fi(X⃗)) = min( f1(X⃗), f2(X⃗), . . . , fk(X⃗)) (2)

gm(X⃗) ≤ 0 (3)

Section 2.1.1 outlines the variables and parameters relevant to the RCPMF problem, de-
tailing the specific values and ranges utilized in the MOO process. Section 2.1.2 elaborates
on the constraints that categorize a given variable vector as feasible or infeasible, integrat-
ing a concise overview of the constraint-verification process. This process encompasses
checks for ultimate and serviceability limit states (ULS and SLS), which are crucial for
assuring structural integrity and performance. Finally, Section 2.1.3 provides an exhaustive
description of the three objective functions devised to assess economic viability along with
environmental and social impacts at the life cycle endpoint.

2.1.1. Variables and Parameters

A set of 41 design variables defines the RCPMF design in the MOO problem in this
study. These variables, represented in Figure 1, determine the structural geometry, the con-
figuration of passive reinforcement, and the selection of material grades. In addition,
a series of predetermined values are set as optimization parameters that reflect on the me-
chanical properties of materials, account for environmental conditions, adhere to legislative
standards, or address specific design requirements related to the project’s location.
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Figure 1. Optimization variables for the RCPMF design problem.

In exploring the MOO problem’s solution landscape, the optimization algorithms
systematically assign values within defined limits to the variables comprising the solution
vector. This step is followed by assessing the objective functions for each solution set
and a verification process to determine the solution’s feasibility based on its adherence to
the constraints. While variables are altered to explore potential designs during optimiza-
tion, parameters—essential for fully delineating the design, objective function evaluation,
and constraint verification—remain unchanged. Comprehensive modeling and testing of
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the optimization process ensures a thorough exploration of viable solutions within the
predetermined bounds of the optimization variables.

The RCPMF comprises three distinct types of optimization variables: real (continuous),
choice (discrete), and integer. The MIP nature of the problem requires different handling
for each during mutation, crossover, and repair operations throughout the optimization
process. Given its notable efficacy when integrated with the NSGA-II algorithm, this study
employs a statistical-based repair operator.

The RCPMF structural design is characterized by three continuous variables related to
the depths of the upper and lower slabs and the lateral walls. Additionally, six continuous
variables specify the effective lengths of passive reinforcement bars at the corners and
within the central sections of both slabs. Four more continuous variables are allocated to
determining the placement lengths of shear reinforcement in the slabs and their branch
separation, summing up to thirteen continuous variables. Specific upper and lower bounds
are defined for each continuous variable, allowing the optimization algorithm to select any
value within this range throughout the optimization process.

Fourteen discrete variables are designated to specify the rebar diameters at all positions
within the passive reinforcement layout. This approach is designed to be open-ended,
permitting the optimization algorithm to consider unconventional designs by allowing
rebar variables to adopt any standard diameter from 8, 10, 12, 14, 16, 20, 25, to 32 mm.
Therefore, the discrete variables for rebar diameters are confined between 8 and 32 mm as
their lower and upper bounds, respectively. Moreover, two discrete variables are introduced
to select the grades for structural concrete and reinforcement steel, constrained to standard
options of 25, 30, 35, and 40 MPa for concrete and 400 and 500 MPa for steel, offering a
structured yet flexible framework for material selection.

Finally, a set of 12 integer variables contains the remaining data regarding the number
of bars, which is necessary for fully defining the passive reinforcement design of the RCPMF.
Handling the integer variables is relatively straightforward, requiring the establishment of
specific lower and upper bounds. Following the above-mentioned non-restricting efforts,
all integer variables are bounded within 4 to 20, corresponding to the minimum and
maximum number of bars. The algorithm can then allocate any integer within said bounds
for each variable. Table 1 compiles the full array of optimization variables, indicating their
units, specific upper and lower bounds, and variable type.

When determining the structural integrity of an RCPMF, several critical aspects need
consideration. These include the structure’s geometric parameters, the properties of ma-
terials, and numerous indications per relevant standards, all essential for defining and
modeling structural loads. Moreover, specific data are required to calculate objective
function values for each feasible solution accurately. Table 2 summarizes these principal
parameters, which equip the mathematical model with the necessary representativeness
and precision for this analysis in combination with the optimization variables.

Table 1. Optimization problem variable units, bounds, and classification.

Variable Unit Lower Limit Upper Limit Type

usd m 0.60 1.60 continuous
lsd m 0.40 1.40 continuous
wd m 0.30 1.20 continuous
utϕ mm 8 32 discrete
utb bars 4 20 integer
ubϕ mm 8 32 discrete
ubb bars 4 20 integer
ltϕ mm 8 32 discrete
ltb bars 4 20 integer
lbϕ mm 8 32 discrete
lbb bars 4 20 integer
wuiϕ mm 8 32 discrete
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Table 1. Cont.

Variable Unit Lower Limit Upper Limit Type

wuib bars 4 20 integer
wueϕ mm 8 32 discrete
wueb bars 4 20 integer
wliϕ mm 8 32 discrete
wlib bars 4 20 integer
wleϕ mm 8 32 discrete
wleb bars 4 20 integer
ucϕ mm 8 32 discrete
ucb bars 4 20 integer
uch m 1 5 continuous
ucv m 0.70 1.80 continuous
lcϕ mm 8 32 discrete
lcb bars 4 20 integer
lch m 1 5 continuous
lcv m 0.70 2.80 continuous
urϕ mm 8 32 discrete
urb bars 4 20 integer
url m 5 9.50 continuous
lrϕ mm 8 32 discrete
lrb bars 4 20 integer
lrl m 3 8 continuous
uvϕ mm 8 32 discrete
uvs m 0.1 0.4 continuous
uvl m 1.50 4.80 continuous
lvϕ mm 8 32 discrete
lvs m 0.1 0.4 continuous
lvl m 1.50 4.80 continuous
cg MPa 25 40 discrete
sg MPa 400 500 discrete

Table 2. Optimization problem parameters and specific values.

Parameter Unit Value

Vertical height m 5
Horizontal span m 10
Hinge height m 3
Embankment depth m 5
Section depth m 1
Terrain density kN/m3 20
Concrete density kN/m3 24
Steel density kN/m3 78.5
Terrain internal friction angle ◦ 30
Active earth pressure – 0.33
Resting earth pressure – 0.50
Heavy vehicle load kN 150
Heavy vehicle length m 1.20
Uniform overload kN/m2 10
Ballast coefficient MN/m3 10
Economic costs EUR Table 3
Environmental impact point Table 3
Social impact mrh Table 3
Standard regulations CEN [22,23]/MFOM [24]
Applicable codes MFOM [25]

2.1.2. Constraints

As with any structural design, the RCPMF solutions are deemed feasible based on
compliance with standard regulations concerning ULS, SLS, and further considerations.
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The verification of these constraints was modeled and integrated within the Python 3-
based model utilized for the optimization [26]. The mathematical model incorporates
global Finite element method (FEM) models for stress analysis alongside several local
models for sectional verification, ensuring a thorough examination of structural integrity
and performance.

Achieving compliance with ULS is critical to ensuring the structural integrity of the
RCPMF under various load cases as dictated by standard regulations. The ULS compliance
check encompasses a multi-step process outlined in Algorithm 1. It begins with evaluating
the shear stress resistance across the entire structure. Subsequently, it involves calculating
the increase in bending moment stress due to shear interaction, which is then integrated
into the overall stress analysis. Following this, the model computes the N-M interaction
diagrams for each section, gaining detailed insight into the structural capacity at all sec-
tions of the RCPMF. This comprehensive analysis culminates in verifying normal stresses,
explicitly checking if the combined axial-bending stress pair for each section falls within its
N-M interaction diagram’s safe region. A favorable evaluation across all sections indicates
the RCPMF’s capacity to withstand shear and normal stresses. The verification process also
includes fatigue assessment and checks on geometrical configurations and reinforcement
layouts. A design meeting all ULS requirements will be reflected in the optimization
process as a constraint vector devoid of non-null values, signifying full compliance.

Algorithm 1 Constraint Verification for ULS

1: Function ULS_Verification(model)
2: Input: model – RCPMF Python model

3: Output: ULS_compliance_vector
4: ULS_compliance_vector ← Array of size len(model.sections)
5: Fill ULS_compliance_vector with “non-compliant”

6: Conduct Global FEM Analysis on model.global
7: Initiate ULS Local Analysis on model.sections
8: for each load_case in model.ULS_load_cases do

9: for section_id, section in enumerate(model.sections) do

10: shear ← section.shear_stress ≤ section.compute_shear_resistance()
11: bending← section.bending_stress is within section.compute_N_M_interaction()
12: f atigue← section. f atigue_stress ≤ section.compute_ f atigue_resistance()
13: geometry← section meets model.regulation for geometry

14: rein f orcement← section meets model.regulation for reinforcement layout

15: if shear AND bending AND f atigue AND geometry AND rein f orcement then

16: ULS_compliance_vector[section_id]← “compliant”

17: end if

18: end for

19: end for
20: return ULS_compliance_vector

After verifying compliance with ULS, the assessment proceeds to SLS to ensure the
structure not only remains safe under all relevant load cases but also retains its aesthetic and
functional integrity. The SLS verification, outlined in Algorithm 2, is a multi-step process
aimed at preventing crack formation and spread throughout the structure. Additionally,
it limits displacements to prevent significant global deformations that might induce non-
structural damage to the RCPMF’s auxiliary systems. Analogous to the ULS procedure,
a design that satisfies all SLS criteria is represented by a constraint vector entirely free of
non-zero values, indicating full adherence to serviceability requirements.
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Algorithm 2 Constraint Verification for SLS

1: Function SLS_Verification(model)
2: Input: model – RCPMF Python model

3: Output: SLS_compliance_vector
4: SLS_compliance_vector ← Array of size len(model.sections)
5: Fill SLS_compliance_vector with “non-compliant”

6: Conduct Global FEM Analysis on model.global
7: Initiate SLS Local Analysis on model.sections
8: for each load_case in model.SLS_load_cases do

9: displacement← model.max_displacement meets model.regulations for displacements

10: for section_id, section in enumerate(model.sections) do

11: crack← section.crack ≤ section.allowed_crack
12: if crack AND displacement then

13: SLS_compliance_vector[section_id]← “compliant”

14: end if

15: end for

16: end for
17: return SLS_compliance_vector

2.1.3. Objective Functions

As delineated in the introductory paragraph of the section, the MOO process aims
to identify a set of values for the n variables that compose X⃗. This set must comply
with the constraints outlined in Section 2.1.2 while simultaneously minimizing the values
of specific objective functions. The MOO problem focuses on achieving highly efficient
RCPMF designs from a life cycle endpoint perspective. A comprehensive evaluation of
RCPMF sustainability necessitates a clear definition and meticulous analysis of objective
functions that reflect the complex dimensions of sustainability. Accordingly, the RCPMF
MOO problem addressed in this study introduces three objective functions to assess the
economic viability and the environmental and social ramifications throughout the RCPMF’s
life cycle, each contributing to a holistic sustainability evaluation.

During the optimization, all three objective functions are calculated through the
Python mathematical model, taking into account the complete life cycle of the RCPMF. This
approach entails defining parameters that encapsulate economic, environmental, and social
data relevant to the materials and processes employed in the production, construction,
upkeep, and eventual decommissioning of the RCPMF. In line with previous research,
the economic analysis primarily evaluates the direct costs associated with concrete and
steel, referencing prices from the BEDEC database [27]. For environmental and social
impacts, the environmental life cycle assessment (ELCA) and social life cycle assessment
(SLCA) endpoint results are determined by aggregating impacts across the RCPMF’s four
life cycle stages. This process is informed by unit impact values previously computed
using OpenLCA 2.1, incorporating data from the Ecoinvent 3.7.1 and soca v2 databases,
and analyzed through the ReCiPe 2008 and SWIM Life cycle impact assessment (LCIA)
methodologies [28]. Table 3 specifies the specific values employed in the evaluation of
objective functions [29–32].
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Table 3. Material cost and life cycle environmental and social unit impact values [27–31].

Material Unit Cost (EUR) elcai (Point) slcai (mrh)

concrete 25 MPa m3 1.129 × 102 2.037 × 101 1.254 × 105

concrete 30 MPa m3 1.262 × 102 2.631 × 101 1.668 × 105

concrete 35 MPa m3 1.293 × 102 2.478 × 101 1.554 × 105

concrete 40 MPa m3 1.331 × 102 2.585 × 101 1.623 × 105

steel B400S kg 1.790 × 100 2.417 × 10−1 1.941 × 103

steel B500S kg 1.840 × 100 2.538 × 10−1 2.067 × 103

clay kg 0.000 × 100 1.062 × 10−3 8.475 × 100

gravel kg 0.000 × 100 1.196 × 10−3 2.617 × 100

sand kg 0.000 × 100 1.718 × 10−3 3.543 × 100

transport, lorry 16–32 ton t·km 0.000 × 100 2.502 × 10−2 4.116 × 101

transport, lorry 3.5–7.5 ton t·km 0.000 × 100 7.755 × 10−2 1.655 × 102

transport, car km 0.000 × 100 2.760 × 10−4 1.417 × 10−1

digger, operation min 0.000 × 100 7.876 × 10−2 8.825 × 102

skid plate, operation min 0.000 × 100 7.651 × 10−2 8.657 × 102

diesel, building machine MJ 0.000 × 100 1.361 × 10−2 8.764 × 100

carbon dioxide kg 0.000 × 100 4.369 × 10−2 0.000 × 100

mortar kg 0.000 × 100 3.084 × 10−2 1.415 × 102

epoxy kg 0.000 × 100 8.399 × 10−1 4.107 × 103

rock crushing kg 0.000 × 100 7.223 × 10−5 8.304 × 10−1

The first of the three objective functions is dedicated to assessing the economic cost of
structural materials. The product of the unitary cost, ci, and quantity used, mi, for concrete
and steel is added as per Equation (4).

C(X⃗) =
n

∑
i=1

ci ·mi(X⃗) (4)

The remaining two objective functions focus on the environmental and social ram-
ifications of the RCPMF life cycle, analyzing the impacts from an endpoint perspective.
A detailed analysis of every process throughout the RCPMF life cycle’s four stages is
conducted to calculate endpoint results, aligning with ISO 14040:2006 [33]. These stages
are the manufacturing, construction, use and maintenance, and end-of-life. Additional
insights into the life cycle model of the RCPMF, including discussions on the carbon capture
capabilities of structural concrete, are elaborated in prior research [10].

The calculation for the ELCA endpoint results utilizes Equation (5). This formula
aggregates the environmental impacts of materials and processes by multiplying each unit
impact elcai by its corresponding quantity mi, summing these across j life cycle stages.
A parallel method, outlined in Equation (6), applies for calculating the SLCA endpoint
results, ensuring both environmental and social impacts are comprehensively assessed.

ELCA(X⃗) =
n

∑
i=1

4

∑
j=1

elcai,j ·mi,j(X⃗) (5)

SLCA(X⃗) =
n

∑
i=1

4

∑
j=1

slcai,j ·mi,j(X⃗) (6)

2.2. Optimization Algorithms

This section introduces a framework for multi-objective optimization that includes
the NSGA-II, NSGA-III, and RVEA algorithms. Section 2.2.1 is an initial setup involving a
repair operator shared by all three methods, illustrating a consistent method for manag-
ing solutions. Detailed in Section 2.2.2 is the ’Algorithmic Enhancement Module’ phase,
in which the NSGA-II, NSGA-III, and RVEA algorithms are run. This approach allows for
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the algorithms’ performance to be directly compared, as discussed in Section 3.2, using
measures such as generational distance and inverted generational distance. During this
phase, unique operators tailored to each algorithm are employed, indicating the different
strategies used for optimization. Figure 2 shows the standardized process and methods
applied across these algorithms within the framework.

The enhancements detailed in our study include the application of a custom repair
operator and specific tuning of the crossover and mutation operators, initially developed
for NSGA-II and now extended to NSGA-III and RVEA. These adaptations enable a consis-
tent application across different algorithms, enhancing their capability to address diverse
optimization challenges. By integrating these tailored modifications into each algorithm,
the framework facilitates a nuanced evaluation of their effectiveness in complex multi-
objective environments.

Termination 
condition?

Initializating 
random solutions

Optimization 
Algorithms with 

Specific operators

Start

EndOptimal pareto 
front

Yes

Statistics Repair 
operator

Evaluate 
objective funtions

N
o

Non dominated 
sorting

Performance 
indicator analysis

Algorithmic 
Enhancement Module

Figure 2. Flowchart depicting the framework with algorithmic enhancement module for NSGA-II,
NSGA-III, and RVEA.

2.2.1. Statistical Repair Operator

A statistical-based repair operator, as outlined in Algorithm 3, is characterized by the
integration of statistical measures—mean and median—with a probabilistic approach to
enhance solutions in an optimization algorithm. In every iteration, solutions are processed
using a probability parameter β to determine the chosen repair strategy. When a generated
random number falls below β, the median is applied to discrete variables (choice and
integer) and the mean to continuous (real) variables. The median is advantageous for
discrete variables, providing resilience against outliers and representing the population’s
most common values. In contrast, the mean calculates an average value for continuous
variables, capturing the population’s central tendency.
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Algorithm 3 Statistical Repair Operator

1: Function ProbabilisticRepair(Y, β)

2: Input: Y, β

3: Output: repaired_Y
4: repaired_Y ← copy of Y
5: average←mean of Y along axis 0

6: midpoints←median of Y along axis 0

7: for each solution y in repaired_Y do

8: for each variable index i in y do

9: varType← variable type at index i
10: if random number < β then

11: if varType is Choice or Integer then

12: medianValue←midpoints[i]
13: if varType is Choice then

14: y[i]← closest value to medianValue in varType.choice
15: else

16: y[i]← round choice to nearest integer within var.bounds
17: end if

18: else if varType is Real then

19: y[i]← clip average[i] within varType.bounds
20: end if

21: else

22: Standard repair is applied based on variable type and bounds

23: end if

24: end for

25: end for
26: return repaired_Y

2.2.2. Multi-Objective Optimization Algorithms

Custom NSGA-II: In the custom NSGA-II algorithm outlined in Algorithm 4, two
pivotal operators are utilized: simulated binary crossover (SBX) and polynomial mutation
(PM), each instrumental for strategic navigation within the search space. The SBX operator
is finely tuned to generate offspring in close proximity to their parent solutions, fostering a
concentrated exploration within the immediate vicinity of the solution space. Governed
by a distribution index, it calibrates the closeness of the offspring to the parent solutions,
striking a delicate balance between exploration and exploitation. Conversely, the PM
operator introduces a subtle variation in the population by minutely altering the real-
valued attributes of solutions. Similarly influenced by a distribution index, PM is essential
for maintaining genetic diversity in the population and avoiding early convergence to
suboptimal solutions. In concert, these operators propel the bespoke NSGA-II algorithm,
ensuring a harmonious equilibrium between convergence to optimal solutions and diversity
preservation, which is fundamental for the efficacy of multi-objective optimization.

Custom NSGA-III: In the elaboration of Custom NSGA-III, depicted in Algorithm 5,
a strategic integration of selection, crossover, and mutation processes is employed to ad-
dress complex many-objective optimization tasks. The algorithm adopts simulated binary
crossover (SBX) and polynomial mutation (PM) to generate a diverse offspring pool, while a
set of predefined reference directions aids in maintaining a well-distributed set of solutions
across many objectives. This synergy of mechanisms distinguishes Custom NSGA-III from
its predecessor, NSGA-II, by enhancing its capability to explore and exploit the multi-
dimensional objective space. The reference-point-based selection strategy is particularly
pivotal, effectively guiding the population towards a Pareto front that is representative
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of the entire objective space, a critical aspect for many-objective optimization. The de-
tailed procedure, as formalized in the provided pseudocode, encapsulates the algorithm’s
systematic approach towards achieving a comprehensive and diverse solution set.

Algorithm 4 Custom NSGA-II

1: Input: Population size pop_size, crossover probability crossover_prob, mutation proba-
bility mutation_prob, crossover distribution index crossover_index, mutation distribu-
tion index mutation_index

2: A set of non-dominated solutions
3: Initialize population P with pop_size individuals
4: Evaluate the initial population P
5: Set generation count gen = 0
6: while termination condition not met do
7: Select parents from P using binary tournament selection
8: Apply SBX crossover with probability crossover_prob and distribution index

crossover_index
9: Apply PM mutation with probability mutation_prob and distribution index

mutation_index
10: Evaluate the offspring population Q
11: Combine populations: R = P ∪Q
12: Perform non-dominated sorting on R
13: Perform crowding distance assignment on each front
14: Select the next generation population P from R
15: gen = gen + 1
16: end while
17: return Population P containing non-dominated solutions

Algorithm 5 Custom NSGA-III

1: Input: Population size pop_size, crossover probability crossover_prob, mutation proba-
bility mutation_prob, crossover distribution index crossover_index, mutation distribu-
tion index mutation_index, reference directions re f _dirs

2: A set of non-dominated solutions distributed across the reference directions
3: Initialize population P with pop_size individuals
4: Evaluate the initial population P
5: Compute the reference points re f _dirs
6: Set generation count gen = 0
7: while termination condition not met do
8: Select parents from P using tournament selection
9: Apply SBX crossover with probability crossover_prob and distribution index

crossover_index
10: Apply PM mutation with probability mutation_prob and distribution index

mutation_index
11: Evaluate the offspring population Q
12: Combine populations: R = P ∪Q
13: Perform non-dominated sorting on R to get fronts F1, F2, . . .
14: Select the next generation population P using reference point based selection
15: gen = gen + 1
16: end while
17: return Population P that approximates the Pareto front

Custom RVEA: In the development of the Custom RVEA, as outlined in Algorithm 6,
elements are incorporated to effectively navigate and exploit the multi-objective optimiza-
tion landscape. The algorithm leverages a set of reference directions (re f _dirs), which act as
guiding vectors in the objective space, facilitating the distribution of solutions along the de-
sired Pareto front. A novel feature, prob_neighbor_mating, introduces a mating preference
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mechanism that enhances diversity and exploration by favoring mating between solutions
that are neighbors, thereby ensuring a more thorough search across the entire solution
space. Additionally, the adaptation parameter (alpha) dynamically adjusts the pressure
exerted by the reference vectors, allowing for a flexible balance between convergence and
diversity throughout the evolutionary process.

Algorithm 6 Custom RVEA with Specific Parameters

1: Input: Reference directions re f _dirs, number of neighbors n_neighbors, probability of
neighbor mating prob_neighbor_mating, adaptation parameter alpha, population size
pop_size

2: A set of solutions approximating the Pareto front
3: Initialize population P with pop_size individuals
4: Evaluate the initial population P
5: Compute the reference vectors based on re f _dirs
6: Set generation count gen = 0
7: while termination condition not met do
8: Assign each individual in P to a reference vector
9: Calculate fitness of each individual based on angular distance to reference vectors

and alpha
10: Select parents, preferring those with closer neighbors with probability

prob_neighbor_mating
11: Generate offspring using crossover and mutation
12: Evaluate the offspring
13: Update the population P based on fitness and alpha adaptation
14: gen = gen + 1
15: end while
16: return Population P that approximates the Pareto front

2.3. Evaluation and Decision-Making Methods

The MOO introduced in Section 2.1 is tackled using the optimization algorithms
described in Section 2.2. This approach yields a collection of non-dominated solutions in-
dicative of highly efficient RCPMF designs. Embedding sustainability into the development
of transportation infrastructure presents a multifaceted challenge. Therefore, this study
broadens its examination beyond merely generating optimal designs that foster sustainabil-
ity enhancements. It aims to assess and contrast the outcomes achieved through various
decision-making strategies applied to the MCDM problem involving the highly efficient
RCPMF designs result of the MOO. In this analysis, the subsequent phase of the design
framework entails employing decision-making strategies to systematically and objectively
rank the most effective design alternatives. Selecting a decision-making algorithm can turn
into a MCDM problem itself. Within this context, the comparative analysis of the outcomes
from each decision-making strategy aims to validate their use via a precise exploration of
their utility in advancing sustainable development within transportation infrastructure.

Recognizing the vast considerations required for complex MCDM problems in any en-
gineering field is crucial, especially given the sustainability-focused efforts of this research.
Factors far exceeding the scope and objectives of this paper can profoundly impact the
decision-making outcomes. With various conditions, including specific stakeholder inter-
ests, logistical and supply chain challenges, or temporary resource shortages, significantly
shaping sustainable infrastructure development worldwide, this study acknowledges its
limitations. The focus remains on examining the effectiveness of different decision-making
algorithms and identifying the variances and parallels in their results for the RCPMF
problem within the specific considerations outlined throughout the document.

Addressing the MCDM problem involves constructing a decision matrix X = rij
encompassing m alternatives Ai = {A1, A2, ..., Am}, evaluated across n criteria. Element rij
within this matrix offers insights into how well alternative i performs relative to criterion j.
This study enhances previous research, applying five distinct decision-making algorithms:
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SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR. These algorithms necessitate initial
criteria weighting as a preliminary step, providing essential information for their operation
rather than being an intrinsic aspect of the algorithms.

2.3.1. Entropy Theory-Based Criteria Weighting

This paper utilizes entropy theory to calculate the criteria weights Wj for an objective
and systematic approach to weighting [34]. This approach is crucial for maintaining the
integrity of the analysis and mitigating the influence of subjective biases that could skew
the results. Determining entropy weights unfolds in four stages. The initial step involves
the normalization of X per Equation (7).

X′ = rij⟨
m

∑
i=1

rij⟩−1 (7)

The normalized matrix X′ enables a direct comparison among criteria that, as seen
in the MCDM problem of this study, may have different units and orders of magnitude.
Entropy, indicative of a system’s disorder, quantifies the requisite information to describe
its state comprehensively. In this research, criteria exhibiting higher entropy are interpreted
as yielding less reliable information, thereby influencing the decision-making efficiency of
the algorithms. Subsequent steps in this methodology involve calculating the entropy Ej
for each criterion and determining the degree of divergence Dj using Equations (8) and (9).

Ej =
−1

ln⟨m⟩

〈
m

∑
i=1

rij · ln⟨rij⟩
〉

(8)

Dj = 1− Ej (9)

The final step in the process calculates Wj by normalizing Dj across all criteria fol-
lowing Equation (10). These weights are subsequently utilized as input data for the
decision-making algorithms, ensuring that each criterion’s relative importance is accurately
reflected in the analysis.

Wj =
Dj

∑n
j=1 Dj

(10)

2.3.2. Decision-Making Algorithms

The strategic selection of SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR is founded
on their capability to navigate the complexities and variances of decision-making scenar-
ios encountered in MOO within sustainable engineering. Each MCDM technique offers
a unique decision-making approach, strengthening the framework by utilizing diverse
aspects of decision analysis, thus increasing the framework’s overall robustness. The choice
of these decision-making techniques enhances the decision-making process and ensures
the framework’s flexibility in accommodating different levels of data quality, stakeholder
preferences, and sustainability criteria. This flexibility is essential for advancing the pri-
mary research goal of enhancing the robustness within the integrated application of MOO
and MCDM.

SAW: The SAW technique streamlines decision-making by directly aggregating
weighted criteria. This method provides a precise, quantitative evaluation of sustain-
ability criteria, resulting in an immediate and explicit ranking of alternatives based on
their aggregated scores. This paper integrates the SAW technique as a well-established and
effective method that seamlessly integrates within the design framework, enhancing its
efficiency and clarity in evaluating options.

Algorithm 7 depicts the operation of the SAW technique [35]. The SAW algorithm
unfolds in three steps, initially computing the normalized decision matrix X′. After nor-
malization, the Si score for each alternative is evaluated as the sum of the products of
each element rij and the entropy weight Wj across the criteria. The final phase involves
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sorting them in ascending order based on the scores S, thereby identifying the most to least
sustainable alternatives.

Algorithm 7 SAW Algorithm Implementation

1: Function SAW(X, W)

2: Input: X, W
3: Output: ranking
4: S← vector of zeros with size n
5: X′ ← normalize X along axis 0

6: for each alternative i in n do

7: Si ← 0

8: for each criterion j in m do

9: rij ← X′ij
10: Si ← Si + Wj · rij

11: end for

12: end for

13: ranking← sort S
14: return ranking

FUCA: The FUCA method ranks alternatives by systematically assessing them against
multiple criteria. This approach considers the individual scores of each alternative and
examines the distribution of these scores across various evaluations. FUCA’s ability to
effectively integrate and process variable data makes it a valuable tool in this study, sup-
porting the goal of strengthening the robustness of the design framework for sustainable
engineering solutions.

Algorithm 8 outlines the FUCA technique [14]. The FUCA starts by sorting alternatives
in ascending order for each criterion. Following this, the score Si results from aggregating
the products of the rankings Rij and the entropy weights Wj for all criteria. The concluding
step involves a second sorting of the alternatives based on the ascending S scores.

Algorithm 8 FUCA Algorithm Implementation

1: Function FUCA(X, W)

2: Input: X, W
3: Output: ranking
4: S← vector of zeros with size n
5: for each alternative i in n do

6: for each criterion j in m do

7: rij ← Xij

8: Q← sort Xj

9: Rij ← index of rij within Q
10: Si ← Si + Wj · Rij

11: end for

12: end for

13: ranking← sort S
14: return ranking

TOPSIS: The TOPSIS method assesses alternatives by measuring their distances to
the most desirable (ideal) and least desirable (nadir) outcomes. Utilizing the Euclidean
distance metric, TOPSIS ranks alternatives based on their geometric proximity to the ideal
and their separation from the nadir. Focusing on optimal and suboptimal scenarios helps
reduce the risk of selecting inferior solutions. Consequently, it ensures that the decision-
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making process upholds the overarching goal of enhancing the robustness of the integrated
design framework.

Algorithm 9 corresponds to the TOPSIS decision-making technique [36]. The TOPSIS
algorithm also starts by computing the normalized decision matrix X′. The following step
involves evaluating the normalized weighted matrix Tij. The next phase identifies the
ideal and the least favorable solutions, A+ and A−, by pinpointing the highest and lowest
values for each criterion j within Tij.The essence of the TOPSIS algorithm is to measure
how closely each alternative aligns with the ideal solution and how far it is from the least
favorable one. This is achieved by determining the Euclidean distances D+

i and D−i of
each alternative to the A+ and A− solutions, respectively. Following this, the algorithm
evaluates the similarity index (Si) as the ratio of the distance to the least favorable solution.
In alignment with the previously described methods, the concluding step organizes the
alternatives in descending order based on S.

PROMETHEE: The PROMETHEE method employs a pairwise comparison approach
to rank alternatives, evaluating each option relative to others based on specific criteria
and utilizing preference functions to ascertain the degree of preference for one alternative
over another. The selection of PROMETHEE for this research is founded on its robust
ability to accommodate both qualitative and quantitative criteria, promoting a thorough
framework well-suited to the complexities of engineering decisions. This method facilitates
nuanced decision-making, effectively capturing the subtle trade-offs and priorities essential
to sustainable design and construction.

Algorithm 9 TOPSIS Algorithm Implementation

1: Function TOPSIS(X, W)

2: Input: X, W
3: Output: ranking
4: S← vector of zeros with size n
5: X′ ← normalize X along axis 0

6: for each criterion j in m do

7: T′j ← X′j ·Wj

8: end for

9: A+, A− ← max(T′j ) and min(T′j ) for each criterion j in m
10: D+, D− ← vectors of zeros with size n
11: for each alternative i in n do

12: for each criterion j in m do

13: D+
i ← D+

i + (T′ij − A+
j )

2

14: D−i ← D−i + (T′ij − A−j )
2

15: end for

16: D+
i ← (D+

i )0.5 distance to D+

17: D−i ← (D−i )0.5 distance to D−

18: Si ← D−i /(D−i + D+
i )

19: end for

20: ranking← sort S
21: return ranking

Algorithm 10 illustrates the PROMETHEE method [37]. Initially, it constructs a prefer-
ence matrix by comparing each pair of alternatives. This paper applies a preference function
that quantifies the extent to which one alternative is preferred over another, factoring in the
criteria weights W. This matrix is crucial for determining the positive and negative flows,
Φ+ and Φ−, representing how much an alternative is preferred and opposed across all
comparisons. The core of PROMETHEE lies in synthesizing these flows into a net flow Φ
for each alternative, assessing its overall performance by offsetting its positive flow against
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its negative. The procedure concludes with the alternatives ranked in descending net flow
order, identifying the top choices. This systematic process, marked by pairwise preference
aggregation, refines the decision matrix into an explicit hierarchy.

Algorithm 10 PROMETHEE Algorithm Implementation

1: Function: PROMETHEE(X, W)
2: Input: X, W
3: Output: ranking
4: F ←matrix of zeros with size n× n
5: for each alternative i in n do
6: for each alternative j in n do
7: if i ̸= j then
8: Pij ← max(0, Xi − Xj) ·W
9: Fij ← ∑ Pij

10: end if
11: end for
12: end for
13: Φ+, Φ− ← vectors of zeros with size n
14: for each alternative i in n do
15: for each alternative j in n do
16: Φ+

i ← Φ+
i + Fij · (n− 1)−1 positive flow

17: Φ−i ← Φ−i + Fji · (n− 1)−1 negative flow
18: end for
19: Φi ← Φ+

i −Φ−i net flow
20: end for
21: ranking← sort Φ
22: return ranking

VIKOR: The VIKOR method ranks and selects alternatives by determining a com-
promise solution representing the closest agreement to the ideal. This method computes
a utility measure for each alternative, reflecting the group utility, and a regret measure,
indicating the individual regret of not achieving the ideal, to determine the rankings.
VIKOR’s methodological approach aligns well with the entropy-based weighting system
used in the study, ensuring that the final decision reflects a balanced consideration of all
relevant factors.

Algorithm 11 introduces the VIKOR method [38]. Initially, the VIKOR algorithm
normalizes the decision matrix X to X′. It then identifies each criterion’s best ( f+) and
worst ( f−) performance values. For each alternative, the algorithm computes two metrics:
Si, the utility, calculated as the weighted sum of the distances from an alternative to the
optimal solution, normalized by the total range of criterion values; and Ri, the regret,
identifying the maximum of these normalized distances to indicate the furthest deviation
from the optimal in the worst-case scenario. These measures are merged into a composite
index Qi using v, a balance coefficient to poise the overall group utility against individual
regret. This paper considers a balance coefficient of 0.5 for this purpose. The final phase
of VIKOR ranks the alternatives based on their Q values, effectively delineating the most
from the least sustainable options.

Evaluating the outcomes of these five decision-making techniques allows for assessing
the design framework’s robustness. Further, by examining the set of non-dominated
solutions resulting from the MOO problem, this approach directly evaluates the efficacy
of the NSGA-II, NSGA-III, and RVEA optimization algorithms in identifying high-quality
optimums within the intricate solution space of the RCPMF problem. Consequently, this
enhances the existing knowledge of their capabilities in promoting sustainable structural
design and validates its integration with one or several decision-making algorithms.
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Algorithm 11 VIKOR Algorithm Implementation

1: Function VIKOR(X, W)
2: Input: X, W
3: Output: ranking
4: X′ ← normalize X along axis 0
5: f+, f− ← max(X′j) and min(X′j) for each criterion j in m
6: S, R← vectors of zeros with size n
7: for each alternative i in n do
8: for each criterion j in m do
9: Si ← Si + Wj · ( f+j − X′ij) · ( f+j − f−j )−1

10: Ri ← max(Ri, Wj · ( f+j − X′ij) · ( f+j − f−j )−1)

11: end for
12: end for
13: S∗ ← min(S), S− ← max(S)
14: R∗ ← min(R), R− ← max(R)
15: Q← vector of zeros with size n
16: for each alternative i in n do
17: Qi ← vs. · (Si − S∗)/(S− − S∗) + (1− v) · (Ri − R∗)/(R− − R∗)
18: end for
19: ranking← sort Q
20: return ranking

3. Results

This section presents the outcomes of deploying optimization algorithms on the
RCPMF problem and the subsequent decision-making approach. Section 3.1 analyzes each
MOO algorithm’s effectiveness in generating non-dominated solutions equivalent to highly
efficient, sustainable designs. Subsequently, Section 3.3 delves into evaluating the MCDM
problem concerning ranking optimal solutions derived from the MOO.

3.1. Algorithm Comparisons

The tuning process for the crossover and mutation operators within the NSGA-II algo-
rithm was conducted methodically in two phases, with the hypervolume metric serving as
the primary evaluation criterion. For the calculation of the hypervolume, each configura-
tion was executed five times. In the initial exploratory phase, a range of η values—0.2, 0.5,
and 0.9—were examined to assess their impact on offspring distribution relative to their
parent solutions, applied to both the SBX and PM operators. Furthermore, the probabilities
for these operators were tested across a range of values—0.01, 0.1, 0.2, and 0.3—to find a
wide variety of potential settings aimed at improving the optimization efforts. This was
followed by an exploitation phase considering values 0.1, 0.08, 0.06, 0.04, and 0.02. This
stage aimed to find an initial setup that could support a balanced approach to exploration
and exploitation in the multi-objective optimization environment.

Following the same structured approach, the tuning process was extended to the
NSGA-III algorithm, adhering to the established η and probability values to ensure consis-
tency in the evaluation. For NSGA-III, the final η value was settled at 0.5 after a compre-
hensive assessment, mirroring the decision-making process in NSGA-II. In the probability
tuning phase, an expanded range of values—0.01, 0.03, 0.04, 0.05, 0.06, and 0.07—was inves-
tigated, ultimately selecting 0.05 as the optimal setting. Additionally, the partitioning count
for determining reference directions was fixed at 12, aiming to capture a broad diversity
of solution directions and thus enriching the algorithm’s ability to uniformly cover the
Pareto front.

The tuning methodology was applied to the RVEA algorithm, with an emphasis on
the conceptual underpinnings of the parameters being adjusted. Initially, the process
focused on the probability of mating between neighboring solutions, exploring values of
0.2, 0.5, and 0.8, before refining the search to 0.15, 0.2, 0.25, and 0.3 in a subsequent phase.
The optimal value was determined to be 0.2, highlighting the algorithm’s preference for
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exploiting local solution neighborhoods to enhance diversity and exploration. Similarly,
the adaptation of the algorithm’s convergence rate, guided by the conceptually defined
adaptation parameter, was explored through initial values of 1.0, 1.5, and 2.0, with fur-
ther refinement to 2.1, 2.0, and 1.9. A final value of 2.0 was selected, underscoring the
balance achieved between fast convergence and the maintenance of solution diversity over
generations. The setting for the number of partitions used to determine the distribution
of reference directions was maintained at 12, mirroring the approach in NSGA-III and
ensuring a consistent framework for analysis. In the table shown in Table 4, the differ-
ent configurations tested, along with the optimal values identified for each parameter,
are presented.

Table 4. Tuning summary of NSGA-II, NSGA-III, and RVEA algorithms using hypervolume as a
factor to identify the best outcome.

Algorithm Parameter Tested Values Optimal Value

NSGA-II η (SBX & PM) 0.2, 0.5, 0.9 0.5
Probability 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3 0.02

NSGA-III η 0.2, 0.5, 0.9 0.5
Probability 0.01, 0.03, 0.04, 0.05, 0.06, 0.07 0.05
Partition count - 12

RVEA Probability of mating 0.2, 0.5, 0.8, 0.15, 0.2, 0.25, 0.3 0.2
Adaptation parameter 1.0, 1.5, 2.0, 2.1, 2.0, 1.9 2.0
Partition count - 12

Table 5 showcases the quantitative analysis of the non-dominated solutions generated
by the NSGA-II, NSGA-III, and RVEA optimization algorithms for the MOO problem.
It includes the specific values of the objective functions for each design, facilitating an
objective assessment of each algorithm’s performance based on three criteria: cost, ELCA,
and SLCA.

Table 5. Multi-objective optimization results for each algorithm.

Algorithm Cost (EUR) ELCA (Point) SLCA (mrh)

NSGA-II 5.92679× 103 1.64259× 103 9.04790× 106

NSGA-II 5.69768× 103 1.69912× 103 9.27121× 106

NSGA-II 5.74080× 103 1.65304× 103 8.96734× 106

NSGA-III 4.78051× 103 1.44901× 103 7.20000× 106

NSGA-III 4.51830× 103 1.52920× 103 7.65131× 106

NSGA-III 5.03727× 103 1.50440× 103 7.00960× 106

RVEA 5.23727× 103 1.51671× 103 8.09550× 106

RVEA 5.19441× 103 1.41667× 103 8.24518× 106

RVEA 5.34868× 103 1.54679× 103 8.05434× 106

This study utilizes an adapted min–max normalization technique to address the
disparities in measurement units and magnitude scales across the evaluation criteria.
In this framework, the radar charts depicted in Figure 3 illustrate the performance of
each algorithm against the three evaluation metrics, applying this normalized approach.
The adjusted normalization method sets a baseline of 0.5 for the lowest value and a cap of 1
for the highest value in the dataset. In this setup, radar charts with smaller areas indicate
superior performance by the algorithms. This superior performance is indicative of RCPMF
designs that exhibit enhanced sustainability throughout their life cycle.

The analysis of the multi-objective optimization results, presented in Table 5 and
Figure 3, underscores the performance of the NSGA-II, NSGA-III, and RVEA algorithms
across three critical objectives: cost, environmental life cycle analysis (ELCA), and social
life cycle analysis (SLCA). The findings are instrumental in elucidating the algorithms’
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efficiencies and shortcomings in navigating the complex multi-objective landscape of
sustainable infrastructure projects.
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Figure 3. Algorithm comparison across three objective functions: (a) normalized NSGA-II,
(b) normalized NSGA-III, (c) normalized RVEA, and (d) general algorithm performance in terms of
cost (EUR), ELCA (point), and SLCA (mrh).

It was observed that NSGA-II consistently yielded the least favorable outcomes across
all three objectives, indicating a relative underperformance in integrating cost efficiency
with environmental and social sustainability metrics. In contrast, NSGA-III emerged as
the most adept in minimizing costs and achieving superior SLCA outcomes compared to
RVEA, suggesting a robust capability in optimizing for economic and social dimensions
simultaneously. The distinction in performance between NSGA-III and RVEA became
particularly pronounced when examining their ability to balance cost reduction with
social sustainability, with NSGA-III demonstrating a more effective optimization pathway.
Meanwhile, RVEA displayed good performance in the ELCA domain, albeit with outcomes
closely rivaled by NSGA-III, highlighting its effectiveness in environmental sustainability
optimization with marginally superior ELCA values. This nuanced performance profile
underscores RVEA’s potential in addressing environmental aspects of sustainability, albeit
within a competitive margin when juxtaposed with NSGA-III.

3.2. Performance Indicator Analysis

This study conducted a systematic experiment to assess the performance of three
multi-objective optimization algorithms: NSGA-II, NSGA-III, and RVEA. The experiment
consisted of 30 separate runs, during which five points were generated for each algorithm
using the same predefined parameters. This methodology allowed for the direct comparison
of the algorithms’ performance under fixed parameter settings. A min–max normalization
procedure was applied to each function separately to ensure comparability among the
results from different objective functions. This method involved standardizing the units of
the variables for all data points, including those on the Pareto frontier. For each experiment,
points from each algorithm were normalized by adjusting their values from the minimum
to the maximum observed across the dataset. This process facilitated a consistent com-
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parison across different optimization landscapes by transforming the varied scales into a
uniform metric.

Two performance metrics were introduced to evaluate further the effectiveness of the
optimization algorithms: generational distance (GD) and inverted generational distance
(IGD). Both metrics quantify the quality of the solutions generated by the algorithms in
terms of their convergence and diversity concerning a known Pareto frontier.

Generational distance (GD) quantifies the average Euclidean distance from each
solution in a set to the nearest point in the Pareto front, reflecting the convergence of
the algorithm-generated solutions. For this paper’s experiment, the size of set A was 5,
representing the five points obtained in each run. The GD is calculated using the following
equation:

GD(A) =

(
1
5

5

∑
i=1

(d2
i )

) 1
2

where di is the Euclidean distance from the i-th solution ai in set A to its nearest point in
the Pareto front Z. Here, A and Z are defined as follows:

A = {a1, a2, . . . , a5}, Z = {z1, z2, . . . , z|Z|}.

This measure is pivotal for assessing the proximity of the obtained solutions to the
ideal solutions on the Pareto front.

Inverted generational distance (IGD) inverts the generational distance and measures
the distance from any point in Z, the Pareto front, to the closest point in A. For this paper’s
experiment, set A contained five points generated in each run. The IGD is calculated using
the following equation:

IGD(Z) =

(
1
|Z|

|Z|

∑
i=1

(d̂2
i )

) 1
2

where d̂i is the Euclidean distance (with p = 2) from a point zi in the Pareto front to its
nearest reference point in set A. The set A is defined as A = {a1, a2, . . . , a5}, representing
the solutions obtained from each run. This metric is crucial for evaluating how well the
generated set of solutions covers the Pareto front.

Advantages of Each Metric:

• GD is particularly useful for assessing the convergence of the generated solutions to
the Pareto front. A lower GD value indicates that the algorithm-generated solutions
are closer to the optimal set of solutions, suggesting better performance in terms
of convergence.

• IGD offers insight into the convergence and diversity of the generated solutions. It
shows how close the solutions are to the Pareto front and how well the solutions are
distributed across the entire front. A lower IGD value signifies that the generated
solutions uniformly cover the Pareto front, indicating a good spread in addition
to proximity.

By incorporating both GD and IGD, this study evaluates the algorithms’ ability to
generate solutions that are close to and well-distributed across the ideal solution set,
capturing the nuanced performance differences between the algorithms in multi-objective
optimization tasks.

Descriptive statistics were computed, providing basic insights into the distribution
of results for each algorithm to evaluate the performance of the optimization algorithms.
These included the mean, standard deviation, maximum, minimum, and median values,
essential for summarizing the central tendency and dispersion of the data. Furthermore,
the non-parametric Kruskal–Wallis test was employed to ascertain statistically significant
differences between the algorithms. This test was chosen due to its robustness in han-
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dling non-normally distributed data and its ability to compare more than two groups
without assuming equal variances, making it well-suited for the ordinal data generated in
this experiment.

In Table 6, the descriptive statistics reveal patterns in the performance of the MOO
algorithms NSGA-II, NSGA-III, and RVEA. Regarding generational distance (GD), NSGA-
III and RVEA display similar mean values, indicating comparable proficiency in converging
to the Pareto front. This similarity is also reflected in the median and standard deviation
values, suggesting consistent performance across the 30 experiments. On the other hand,
a pronounced difference is observed for inverted generational distance (IGD). NSGA-III
presents a substantially lower mean and median compared to RVEA, highlighting its
enhanced capability to generate a diverse set of solutions that effectively span the entire
Pareto front.

The non-parametric Kruskal–Wallis test was conducted to statistically affirm the
differences in performance observed between the algorithms, as detailed in Table 6. This
test is ideal for data that do not follow a normal distribution, which often happens in the
case of multi-objective optimization because it compares the median values across groups
without assuming data normality. The resulting p-values for both average generational
distance (Avg GD) (1.29× 10−13) and inverted generational distance (IGD) (6.59× 10−18)
were significantly low, leading to the rejection of the null hypothesis and confirming
differences in algorithm performance. The results indicate that NSGA-III may be more
effective in generating a diverse set of solutions, as demonstrated by its IGD results.

Table 6. Results of GD and IGD for various algorithms across experiments.

Experiment GD IGD

NSGA-II NSGA-III RVEA NSGA-II NSGA-III RVEA

1 0.9664 0.1292 0.0803 0.9904 0.2348 0.3808
2 1.1340 0.1481 0.1411 1.1619 0.2332 0.3784
3 1.0045 0.1446 0.1585 1.0451 0.2529 0.4040
4 0.9965 0.1473 0.1649 1.0108 0.2353 0.3645
5 0.9698 0.1307 0.1207 1.0364 0.2456 0.3426
6 0.9280 0.1646 0.1637 1.0216 0.2630 0.3281
7 1.0534 0.1377 0.1285 1.0095 0.2308 0.3363
8 0.9312 0.1602 0.1236 0.9675 0.2456 0.3999
9 1.0279 0.1439 0.1100 1.0708 0.2088 0.3326
10 1.0039 0.0922 0.1418 1.0574 0.2283 0.3736
11 0.9841 0.1511 0.1540 0.9471 0.2505 0.3859
12 1.0160 0.1127 0.1062 1.0275 0.2276 0.4011
13 0.9124 0.1421 0.1101 0.9132 0.2248 0.3524
14 1.0595 0.1332 0.1593 1.0609 0.2242 0.3418
15 1.0723 0.1619 0.1378 1.0425 0.2533 0.3504
16 1.0322 0.1222 0.1239 1.0990 0.2283 0.3710
17 0.9758 0.1384 0.1359 0.9857 0.2270 0.3422
18 1.0865 0.1748 0.1186 1.0432 0.2433 0.3254
19 1.0100 0.1614 0.1290 0.9320 0.2634 0.3570
20 1.0245 0.1132 0.1392 1.0530 0.2236 0.3336
21 1.0509 0.0986 0.1460 1.1170 0.2397 0.3483
22 1.0935 0.1298 0.1329 1.1163 0.2362 0.3871
23 1.0668 0.1190 0.1615 1.0783 0.2398 0.4041
24 0.9923 0.1247 0.1603 1.0493 0.2368 0.3667
25 1.0751 0.1264 0.1212 1.0994 0.2288 0.3500
26 0.9908 0.0817 0.1362 1.0070 0.2435 0.3412
27 0.9587 0.1581 0.1603 0.9125 0.2582 0.4232
28 1.0647 0.1084 0.1573 1.0251 0.2343 0.3747
29 1.0590 0.1223 0.1274 1.0541 0.2556 0.3851
30 0.9676 0.1280 0.1158 0.9620 0.2351 0.3446

Mean 1.0169 0.1336 0.1355 1.0299 0.2384 0.3642
Std Dev 0.0528 0.0219 0.0203 0.0598 0.0127 0.0259
Max 1.1340 0.1748 0.1649 1.1619 0.2634 0.4232
Min 0.9124 0.0817 0.0803 0.9125 0.2088 0.3254
Median 1.0130 0.1320 0.1361 1.0395 0.2358 0.3608

Kruskal–Wallis p-value 1.29× 10−13 6.59× 10−18
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3.3. Multi-Criteria Decision Analysis for Structural Design Optimization

This paper comprehensively evaluates the efficacy of the NSGA-II, NSGA-III, and RVEA
optimization algorithms within a structural design context. This section presents the analy-
sis of the non-dominated solutions produced by each optimization algorithm in addressing
the RCPMF challenge. Additionally, the results of deploying a comprehensive range of
decision-making methods are examined to gauge the applicability of these techniques
within the structural design framework and the robustness and replicability of its results,
considering both optimization and MCDM perspectives.

Within this context, Table 7 presents the collection of optimization variables that delineate
the non-dominated solutions. The configuration of passive reinforcement—encompassing
aspects like diameter, the amount of bars, and separation of shear branches—is combined
into an effective area Are parameter. This method facilitates its interpretation, offering direct
insight into the sectional properties and streamlining the comprehension of these elements.

Figure 4 showcases the primary geometric features of the upper and bottom slabs
and the lateral walls for the structures yielded by each optimization algorithm. Across
all the alternatives, optimal designs feature upper slab depths ranging between 0.75 and
1.07 m, with the RVEA algorithm exhibiting the most significant variability in its results.
The NSGA-II algorithm, in particular, favors designs that incorporate wider lower slabs,
reaching up to 0.93 m. This tendency towards increased lower slab depths is not as
pronounced in the non-dominated solutions produced by NSGA-III and RVEA, which tend
towards more moderate section depths, averaging 0.65 and 0.71 m, respectively. Despite
the distinct variability observed in the designs of the upper and lower slabs, a consistent
pattern emerges among all three optimization algorithms, converging on solutions with
specified lateral wall depths, thereby narrowing the variability across these sections of
the RCPMF.

Table 7. Non-dominated solution optimization variables for each optimization algorithm.

NSGA-II NSGA-III RVEA

A1 A2 A3 A4 A5 A6 A7 A8 A9

wd 3.89× 10−1 3.89× 10−1 4.28× 10−1 3.08× 10−1 3.01× 10−1 3.00× 10−1 3.80× 10−1 3.58× 10−1 3.54× 10−1

usd 8.31× 10−1 8.31× 10−1 1.02× 10+0 7.84× 10−1 1.06× 10+0 8.29× 10−1 7.86× 10−1 7.53× 10−1 1.07× 10+0

lsd 9.25× 10−1 9.25× 10−1 6.51× 10−1 6.01× 10−1 6.58× 10−1 7.05× 10−1 6.43× 10−1 8.29× 10−1 6.60× 10−1

Awli 2.20× 10−3 2.20× 10−3 1.61× 10−3 2.95× 10−3 4.02× 10−3 1.21× 10−3 3.93× 10−3 3.93× 10−3 2.51× 10−3

Awle 1.01× 10−3 1.01× 10−3 3.14× 10−3 1.21× 10−3 5.50× 10−4 1.24× 10−3 5.65× 10−4 7.07× 10−4 1.01× 10−3

Awui 1.13× 10−3 1.13× 10−3 1.41× 10−3 2.95× 10−3 7.85× 10−4 1.41× 10−3 2.41× 10−3 2.45× 10−3 1.26× 10−3

Awue 2.83× 10−3 2.83× 10−3 2.20× 10−3 7.07× 10−4 8.04× 10−4 1.96× 10−3 1.02× 10−3 1.88× 10−3 4.71× 10−4

Aub 6.38× 10−3 6.38× 10−3 4.42× 10−3 4.71× 10−3 4.08× 10−3 4.42× 10−3 4.91× 10−3 3.93× 10−3 4.42× 10−3

Aur 2.41× 10−3 2.41× 10−3 4.40× 10−3 2.41× 10−3 3.02× 10−3 4.40× 10−3 3.77× 10−3 2.81× 10−3 4.42× 10−3

Aut 1.24× 10−3 1.24× 10−3 5.50× 10−4 8.64× 10−4 3.93× 10−4 2.01× 10−3 1.01× 10−3 6.28× 10−4 8.04× 10−4

Alb 1.96× 10−3 1.96× 10−3 1.41× 10−3 2.45× 10−3 7.92× 10−4 1.13× 10−3 1.26× 10−3 1.88× 10−3 8.04× 10−4

Alr 8.84× 10−3 8.84× 10−3 3.02× 10−3 7.36× 10−3 1.81× 10−3 3.42× 10−3 3.42× 10−3 1.92× 10−3 2.04× 10−3

Alt 1.47× 10−3 1.47× 10−3 2.61× 10−3 2.01× 10−3 1.36× 10−3 8.64× 10−4 2.61× 10−3 7.85× 10−4 5.40× 10−3

Alc 5.65× 10−4 5.65× 10−4 1.61× 10−3 3.14× 10−4 3.14× 10−4 1.88× 10−3 1.01× 10−3 7.92× 10−4 7.92× 10−4

Auc 1.36× 10−3 1.36× 10−3 8.04× 10−4 1.61× 10−3 5.65× 10−4 9.42× 10−4 1.26× 10−3 4.52× 10−4 1.96× 10−3

Auv 3.42× 10−3 3.42× 10−3 2.50× 10−3 1.81× 10−3 1.44× 10−3 4.68× 10−3 3.27× 10−3 5.16× 10−3 3.36× 10−3

Alv 1.00× 10−3 8.97× 10−4 5.24× 10−3 1.08× 10−3 5.84× 10−3 8.60× 10−4 2.84× 10−3 7.67× 10−4 8.48× 10−4

lcv 2.73× 10+0 2.73× 10+0 1.29× 10+0 1.08× 10+0 2.18× 10+0 1.50× 10+0 1.24× 10+0 2.02× 10+0 1.20× 10+0

lch 4.71× 10+0 4.71× 10+0 4.07× 10+0 3.57× 10+0 3.20× 10+0 3.92× 10+0 3.07× 10+0 4.43× 10+0 4.69× 10+0

ucv 1.00× 10+0 1.00× 10+0 1.24× 10+0 1.27× 10+0 1.51× 10+0 1.62× 10+0 1.51× 10+0 1.15× 10+0 1.14× 10+0

uch 1.52× 10+0 1.52× 10+0 2.01× 10+0 1.51× 10+0 4.59× 10+0 4.06× 10+0 2.46× 10+0 3.53× 10+0 2.04× 10+0

uvl 3.19× 10+0 3.19× 10+0 3.63× 10+0 3.03× 10+0 3.22× 10+0 3.70× 10+0 3.03× 10+0 3.06× 10+0 4.24× 10+0

lvl 3.14× 10+0 2.81× 10+0 2.42× 10+0 3.67× 10+0 1.22× 10+0 2.94× 10+0 3.42× 10+0 1.07× 10+0 2.52× 10+0

url 9.55× 10+0 9.55× 10+0 5.29× 10+0 7.95× 10+0 7.96× 10+0 7.64× 10+0 7.26× 10+0 8.58× 10+0 7.04× 10+0

lrl 9.06× 10+0 9.11× 10+0 5.20× 10+0 6.69× 10+0 9.01× 10+0 5.19× 10+0 5.88× 10+0 6.15× 10+0 5.13× 10+0

cg 3.50× 10+1 3.00× 10+1 3.50× 10+1 3.50× 10+1 2.50× 10+1 3.50× 10+1 3.50× 10+1 3.50× 10+1 2.50× 10+1

sg 4.00× 10+2 4.00× 10+2 5.00× 10+2 5.00× 10+2 5.00× 10+2 5.00× 10+2 4.00× 10+2 5.00× 10+2 4.00× 10+2
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Figure 4. Sectional geometry comparison of the non-dominated solutions for each algorithm.

Figure 5 portrays the analysis of the use of material resources for each non-dominated
solution derived from the NSGA-II, NSGA-III, and RVEA optimization algorithms. Notably,
the NSGA-III and RVEA algorithms lead to designs that consume less concrete. This trend
correlates with the more pronounced sectional depths in solutions from NSGA-III for the
RCPMF. Moreover, NSGA-III tends to converge towards designs that make more efficient
use of passive reinforcement, thereby reducing the required mass of steel. In contrast,
the NSGA-II algorithm exhibits less favorable outcomes in this regard, with its solutions
generally demanding higher quantities of concrete and steel resources. Despite these
differences, all solutions maintain passive reinforcement densities exceeding 100 kg/m3.
Within this spectrum, the NSGA-III algorithm trends towards solutions with somewhat
lower reinforcement densities, whereas NSGA-II and RVEA display closely aligned results
in terms of structural material usage.
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Figure 5. Structural material comparison of the non-dominated solutions for each algorithm.

This manuscript comprehensively evaluates the NSGA-II, NSGA-III, and RVEA al-
gorithms, focusing on their proficiency in generating non-dominated optimal solutions
within a MOO for the RCPMF design challenge. Section 3.1 meticulously explored how
these optimization algorithms perform against three sustainability metrics pertinent to
the life cycle of the RCPMF. Previous paragraphs detailed the primary attributes of the
RCPMF designs. This paper now critically assesses the design framework integrating MOO
algorithms with MCDM approaches. Table 8 analyzes the results of deploying the SAW,
FUCA, TOPSIS, PROMETHEE, and VIKOR decision-making algorithms on the MCDM
problem, explicitly focusing on ranking the non-dominated solutions generated from the
MOO process.



Mathematics 2024, 12, 1478 26 of 30

Table 8. Multi-criteria decision-making for structural optimization results.

Cost ELCA SLCA Scores Ranks

Wj 0.33368 0.33165 0.33467 SS
i SF

i ST
i SP

i SV
i RS

i RF
i RT

i RP
i RV

i

A1 5.92× 103 1.64× 103 9.04× 106 0.9809 8.0020 0.8964 0.9014 0.9728 8 8 8 8 8
A2 5.69× 103 1.69× 103 9.27× 106 0.9871 8.3326 0.9019 1.0000 1.0000 9 9 9 9 9
A3 5.74× 103 1.65× 103 8.96× 106 0.9657 7.6653 0.8609 0.8657 0.8441 7 7 7 7 7
A4 4.78× 103 1.44× 103 7.20× 106 0.8118 2.0000 0.1366 0.0840 0.0000 1 1 1 2 1
A5 4.51× 103 1.52× 103 7.65× 106 0.8310 2.9959 0.2420 0.2834 0.2244 3 3 2 3 3
A6 5.03× 103 1.50× 103 7.00× 106 0.8296 2.3306 0.2424 0.0000 0.1550 2 2 3 1 2
A7 5.23× 103 1.51× 103 8.09× 106 0.8831 4.6683 0.4696 0.4801 0.3307 5 5 5 5 5
A8 5.19× 103 1.41× 103 8.24× 106 0.8666 3.6743 0.4322 0.5462 0.2988 4 4 4 6 4
A9 5.34× 103 1.54× 103 8.05× 106 0.8937 5.3306 0.5117 0.4619 0.4178 6 6 6 4 6

The radar plot featured in Figure 6 employs the modified min–max normalization
technique to represent the scoring outcomes of the nine alternatives utilizing the five
distinct decision-making techniques. This methodology bypasses the scoring disparities
inherent to the varied algorithmic structures of these techniques. Despite their operational
discrepancies, the scoring outcomes from the five decision-making approaches exhibit
remarkable uniformity across all alternatives. This consistency is further observed in the
correlation heatmap, which effectively highlights the strong correlation among the five
decision-making techniques.

The entropy-based weighting showcases a commendable equilibrium among the three
life cycle assessment metrics, underscoring the importance of cost, ELCA, and SLCA in
informing the decision-making process. The scoring outcomes reveal significant similarity
in how the five decision-making techniques score and rank the alternatives, with correla-
tion coefficients exceeding 0.94. This high correlation denotes a substantial uniformity in
evaluation outcomes despite the inherent differences in each algorithm’s methodology. In-
terestingly, this consensus is particularly pronounced among the highest and lowest-ranked
alternatives, whereas the most noticeable discrepancies in ranking occur among those in the
middle. This pattern suggests a decision-making framework that effectively differentiates
between the most and least sustainable options, with slight variations observed among the
moderately performing alternatives.
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Figure 6. Decision-making algorithm result comparison: (a) radar plot with normalized alternative
scores, and (b) scoring correlation across all decision-making algorithms (SAW, FUCA, TOPSIS,
PROMETHEE, and VIKOR).

Alternatives A4 to A6, representing the non-dominated solutions produced by the
NSGA-III algorithm, consistently emerge as the top three selections for the MCDM problem.
Notably, alternative A4 is deemed the highest-ranked RCPMF design by four decision-
making techniques, with only PROMETHEE favoring A6 as the leading option. On the
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other end of the spectrum, alternatives A1 to A3, derived from the NSGA-II algorithm, are
identified as the least favorable options. Each technique unambiguously categorizes these
RCPMF designs as offering minimal life cycle sustainability benefits within highly efficient
structures. This observation does not detract from their efficiency but underscores the
NSGA-III’s superior compatibility with the RCPMF within the outlined MOO framework.
Meanwhile, the alternatives A7 to A9, generated by the RVEA algorithm, occupy the
intermediate positions in the ranking.

The high correlation among the outcomes derived from the five decision-making
algorithms highlights the replicability and reliability of the methodology that combines
MOO and MCDM within the design framework for the RCPMF challenge. This section
provided an in-depth assessment of the performance of various MOO algorithms in de-
veloping RCPMF designs that prioritize life cycle sustainability. Further, by applying a
range of decision-making techniques, this analysis scrutinized the efficacy of the NSGA-II,
NSGA-III, and RVEA algorithms, endorsing their incorporation into a cohesive structural
design framework combining MOO and MCDM. This holistic strategy demonstrates the
decision-making process’s integrity, validates the integrated design framework capabil-
ities, and extends the range of techniques available to advance sustainable structural
design methodologies.

4. Conclusions

This paper critically evaluates the life cycle optimization performance of three op-
timization algorithms within a cohesive design framework that integrates for advanc-
ing sustainable transportation infrastructure. Combining MOO techniques with MCDM
methodologies, this work expands upon and substantiates a systematic approach to ad-
dressing the intricate challenges in efficient structural engineering design. The investigation
employs the RCPMF design problem, leveraging an array of MOO algorithms: NSGA-II,
NSGA-III, and RVEA. These algorithms are enhanced with specialized crossover, mutation,
and statistical-based repair operators to address the MIP nature of the MOO problem. The al-
gorithms’ performance is evaluated against life cycle sustainability metrics—economic
cost, ELCA, and SLCA—across every non-dominated solution. The analysis highlights
the NSGA-III as the best-performing algorithm, offering a nuanced understanding of its
potential to facilitate sustainable design approaches.

Following the optimization phase, the MCDM problem is rigorously evaluated, ad-
dressing nine non-dominated solutions generated by the optimization algorithms. This
study utilizes a comprehensive set of decision-making techniques, including SAW, FUCA,
TOPSIS, PROMETHEE, and VIKOR, coupled with an entropy theory-based methodology
for unbiased criteria weighting. This combination further enhances the framework’s capa-
bilities in identifying efficient designs. The results corroborate and expand the methods
available for a cohesive MOO and MCDM design framework, demonstrating the strategy’s
efficiency and reliability. Such findings advocate for a transformative approach to infrastruc-
ture development, steering towards more advanced and sustainable engineering solutions.

• NSGA-III is highlighted as the most effective algorithm, with its non-dominated solu-
tions for the RCPMF designs consistently ranked as the top three choices by all applied
decision-making techniques. RVEA positions next, with its solutions ranked in the
mid-range, yet exhibiting some of the best scores for life cycle sustainability metrics.

• On the other end, NSGA-II shows less favorable outcomes for RCPMF optimization
within the defined framework of this study, pointing towards its limited applicability
under the examined conditions. This evaluation outlines the relative performance
of each algorithm, contributing valuable insights into their suitability for addressing
the specific characteristics of the RCPMF problem within sustainable transportation
infrastructure design.

• The analysis of performance indicators has offered insights into the potential efficacy
of the NSGA-II, NSGA-III, and RVEA algorithms. Descriptive statistics, based on 30 ex-
perimental runs, suggest that NSGA-III is relatively consistent in its approach towards
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the Pareto front, as reflected by its similar mean and GD values when compared to
RVEA. In the case of IGD, NSGA-III appears to have an edge, hinting at its capability
to produce a more varied set of solutions. The Kruskal–Wallis test lends statistical sup-
port to these observations, suggesting significant differences in performance among
the algorithms.

• In addressing the MCDM problem, a significant alignment is observed in the ranking
of alternatives by the five decision-making algorithms despite the intrinsic differences
in their algorithmic structure and scoring methodologies. This concurrence, repre-
sented by correlation coefficients from 0.94 to 0.99, underscores the robustness of
the decision-making process within the integrated MOO and MCDM frameworks,
demonstrating a cohesive understanding and evaluation of the alternatives’ sustain-
ability performances.

• Four out of five decision-making algorithms identified the alternative A4 as the most
sustainable design for the RCPMF over its life cycle. This design utilizes 35MPa
structural concrete to construct slender lateral walls and features restrained section
depths for both the upper and lower slabs. Although it does not secure the lowest
values in cost, ELCA, or SLCA, the design effectively leverages B500S steel for passive
reinforcement, conforming to a well-rounded design. This outcome emphasizes the
necessity of an integrated approach that employs MOO to address multiple aspects of
sustainability simultaneously.

• By applying and critically evaluating the design framework for the RCPMF optimiza-
tion problem, this study aims to validate and expand upon a practical method for
incorporating life cycle considerations right from the design phase. The findings un-
derscore the effectiveness and reliability of combining MOO and MCDM techniques.
This integrated approach aims to produce economically viable designs that excel in
environmental and social sustainability across their life cycle. These solutions signify
a significant stride towards embedding holistic sustainability criteria in structural
design processes.

While the outcomes align with previous research and further underscore the efficacy
and robustness of integrating MOO with MCDM, the authors recognize the limitations
arising from the assumptions and premises articulated throughout this study. These
constraints were essential to develop a comprehensive mathematical model capable of
facilitating the design process, including structural calculation, constraint verification,
objective function assessment, and exploration of the optimization landscape. Additionally,
considering the modular nature of the structural solution, integrating factors related to
supply chain and transportation challenges could lay the groundwork for further evaluating
the scalability of the specific case study discussed in this paper. Given the focus on
sustainable infrastructure development, the authors consider these additions a crucial
direction for future research efforts. Nonetheless, these factors delineate the scope of
the present investigation. Future work that delves into varied scenarios, optimization
benchmarks, and data variability holds promise for refining this approach, potentially
broadening its applicability and enhancing its precision in structural design optimization.

Given the observed variances in the convergence and diversity metrics among the
NSGA-II, NSGA-III, and RVEA algorithms, future studies should thoroughly investigate
the underlying mechanisms contributing to these differences. A detailed examination of
algorithmic parameters, such as selection pressure, mutation rates, and crossover strategies,
could provide insights into their impact on convergence behaviors. Additionally, exploring
the interaction between these parameters and the specific problem characteristics of the
RCPMF designs might reveal why certain algorithms outperform others in specific contexts.
Pursuing these inquiries could lead to more tailored algorithmic adjustments that enhance
performance across a broader range of optimization scenarios, optimizing the algorithms
for specific types of multi-objective problems.
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Abbreviations
The following abbreviations are used in this manuscript:

SOO Single-objective optimization
MOO Multi-objective optimization
RCPMF Reinforced concrete precast modular frame
NSGA-II Non-dominated sorting genetic algorithm II
MIP Mixed-integer programming
MCDM Multi-criteria decision-making
SAW Simple additive weighting
FUCA Faire un choix adéquat
NSGA-III Non-dominated sorting genetic algorithm III
RVEA Reference vector guided evolutionary algorithm
ELCA Environmental life cycle analysis
SLCA Social life cycle analysis
TOPSIS Technique for order of preference by similarity to ideal solution
PROMETHEE Preference ranking organization method for enrichment evaluation
VIKOR Visekriterijumska optimizacija i kompromisno resenje
ULS Ultimate limit state
SLS Service limit state
FEM Finite element method
ELCA Environmental life cycle assessment
SLCA Social life cycle assessment
LCIA Life cycle impact assessment
SBX Simulated binary crossover
PM Polynomial mutation
GD Generational distance
IGD Inverted generational distance
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