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Introduction
Optimization problem is defined as finding the best solution 

from the feasible solution in a pool which contains all solutions. 
In many engineering problems, the optimal solution can be the 
minimum or maximum value of the objective function of the 
problem. Sometimes, the optimization problem might have multiple 
objective functions and multiple solutions. Also, the optimization 
problems can be classified as size, shape, and topology, discrete, 
continuous, single or multi-objective optimization. The application 
of optimization to real word engineering problems is quite recent, 
mainly due to the complexity of mathematical models, described 
by non-linear functions and generating a non-convex space of 
solutions. With the advent of advanced optimization methods, last 
decades have witnessed a growing application of optimization 
to a wide range of engineering problems, from automotive to 
biomedicine, and of course, to civil engineering. Applications of 
optimization techniques are most exciting, challenging, and of 
truly large scale when it comes to the problems of civil engineering 
in terms of both quality and quantity. In order to overcome the  

 
difficulties, researchers are interested in advanced optimization 
techniques. In the recent literature, researchers have applied the 
advanced optimization techniques to different purposes. The aim of 
this paper is to collect the studies using optimization algorithms in 
different divisions of civil engineering problems in such as structural 
engineering, construction management, mechanics, transportation 
and geotechnical engineering. This paper consists of two main 
sections. The first one is the optimization algorithms which have 
been used to solve civil engineering problems. The other one is the 
application of the optimization algorithms on different divisions of 
the civil engineering problem presented in last decades. Then, the 
conclusions and the references are given as last sections.

Optimization Algorithms
The optimization algorithms have been introduced in this 

section. These algorithms are; Genetic Algorithms (GA), Harmony 
search (HS), Artificial Bee Colony (ABC), Tabu Search (TS), Teaching–
Learning-Based Optimization (TLBO), Particle Swarm Optimization 
(PSO), Big bang – big crunch (BBBC), Charged System Search (CSS), 
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Cuckoo Search Algorithm (CSA), Ant Colony Optimization (ACO), 
Jaya, Firefly algorithm (FA), Simulated Annealing (SA), Cultural 
Algorithm (CA), Differential Evolution (DE), League championship 
algorithm (LCA), Backtracking Search Algorithm (BSA),Glowworm 
Swarm Optimization (GSO), Memetic Algorithm (MA), Greedy 
Randomized Adaptive Search Procedure (GRASP), etc. In addition to 
these algorithms, similar algorithms derived from these algorithms 
have been developed by the researchers such as elitist TLBO and 
intelligent GA. In the multi-objective optimization problem, the 
name of the existing optimization algorithm may be changed as 
NDS-GA (non-dominated sorting genetic algorithm). In the Table 

1, the optimization algorithm and their first original papers are 
given. Genetic algorithms based on the Darwin’s theory about 
evolution [1]. These algorithms start with a randomly generated 
initial population which is a set of possible solutions related to 
the problem. In each generation of the optimization process, the 
biological operators are used to create next population by the 
hope that the new population will be better the old one. The main 
operators used in this algorithm are selection, encoding, crossover 
and mutations. The new solutions are selected from the current 
populations according to their value fitness functions (Table1).

Table 1: Optimization algorithms.

Name Authors of original paper Year References Related Papers

SA Kirkpatrick S, Gelatt CD, Vecchi MP 1983 [13] [33,35,53,54,103,109]

GA JH Holland 1975 [1] [34,35,40,49,51,57,59,81, 86,93]

TS Fred Glover 1989 [4] [105]

ACO Marco Dorigo 1992 [10] [52,55,67,72,78,82,83,131]

CA Robert G Reynolds 1994 [14] [31,107]

PSO J Kennedy, R Eberhart 1995 [6] [35,38,39,43,58,63,75,76,79,80]

DE Rainer Storn, Kenneth Price 1997 [15] [74,139] 

HS Zong Woo Geem, Joong Hoon Kim, GV Loganathan 2001 [2] [45,56,84,104,110,35]

BBBC K Erol Osman, Ibrahim Eksin 2006 [7] [137,138]

ABC Dervis Karaboga, Bahriye Basturk 2007 [3] [95,96]

CSA Xin-She Yang, Suash Deb 2009 [9] [43,121]

LCA Ali Husseinzadeh Kashan 2009 [16]  

GSO KN Krishnanand, D Ghose 2009 [18]  

CSS A Kaveh, S Talatahari 2010 [8] [135,136]

FA Xin-She Yang 2010 [12] [43,45,106]

TLBO R Venkata Rao, Vimal J Savsani, DP Vakharia 2011 [5] [92,97,98,112,116,120,134]

BSA Pinar Civicioglu 2013 [17]  

Jaya R Venkata Rao 2016 [11] [127-129]

Harmony search was firstly proposed in the dissertation by 
Geem [19], then presented in a journal paper by the Geem et al. 
[2]. It is derived from an artificial phenomenon found in musical 
performance namely the process of searching for better harmony. 
Musical performances seek a best state determined by aesthetic 
estimation, as the optimization algorithms seek a best state 
determined by objective function evaluation. This algorithm 
stars an initial harmony memory (solutions sets) and used some 
parameter such as harmony memory considering rate (HMCR) to 
improve the next harmony memory. Artificial Bee Colony simulates 
the intelligent foraging behavior of honey bee swarm. Employed 
bees, unemployed bees, and scout bees are the type of bee defined 
in this algorithm. Employed bees search food around the food 
source and they store the nectar. Unemployed bees choose the 
source of food with certain probability by following the dances of 
the employed bees. The unemployed bees turn to the source of the 
selected food and begin to store nectar as employed bees. Employed 
bees who consume food sources become scout bees to search for 
new sources [20]. Tabu Search algorithm explores the search space 
by a sequence of movies. To escape the local optimum, the certain 
movies are listed in a memory called forbidden (tabu) search. 

This algorithm contains some elements: tabu list, neighborhood, 
aspiration criterion, termination criterion and cost function. 
Among from these elements, the aspiration criterion is used to 
determine the best search movie. The new solutions are chosen 
from the neighborhood of the current solution and the solution 
which has the minimum cost becomes the new current solution 
[21]. Teaching–Learning-Based Optimization consists of two 
phases: Teacher Phase and Learner Phase. In the first phase, the 
best solution which has the minimum objective function is defined 
as a teacher. By using the mean solution and the teaching factor, the 
new solutions are created in the neighborhood of the teacher. If the 
new solution is better than the old one, the new solution is replaced 
with the old one. In the learner phase, the solutions obtained 
from the learner phase are called as student. Randomly select 
two students are compared with each other. The new solution is 
created in the neighborhood of the better student. In this way all 
students are compared to each other. The new solution obtained 
from the learner phase is replaced the old one if it is better than 
the old one. So, the solutions are updated in the TLBO algorithm 
to find global solution [22]. Particle Swarm Optimization is an 
optimization method based on the using a population of particles 
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to find the optimal solution [6,23]. In this algorithm, swarm is 
consisted of particles which are the individuals (feasible solutions). 
This algorithm does not require derivative information and has an 
easy implementation in searching the optimal solutions. To find 
best position (optimal solutions) each particle cooperates with 
each other by moving according to their velocity [24].

Big Bang–Big Crunch uses a randomly created initial population 
as in the other population-based optimization algorithms. 
Initial population is called Big bang phase in this algorithm. The 
individuals (candidate solutions) of Big bang phase are dispersed 
to the search space in a uniform manner [7]. The other phase is 
the Big Crunch for this algorithm. This phase has a convergence 
operator to obtain only one output from the feasible inputs. After 
the implementation of these phases, the new population is created 
to find optimal solutions. Charged System Search is a population-
based optimization method. It is established on the physics laws. 
Each solution sets are considered as a charged particle. This particle 
is affected by the electrical fields of the other agents. Each particle 
has a magnitude of charge and as a result creates an electrical 
field around its space. The magnitude of the charge is calculated 
according to the quality of its solution [8,25]. This algorithm uses a 
memory to save a number of first charged particles and their values 
of objective functions. This memory is called as charged memory. 
The updated charged particles are compared with the old ones, 
and the better ones are stored in the charged memories [26]. The 
procedure is repeated by the hope that the optimal solutions will be 
reached. Cuckoo Search Algorithm is based on the obligate brood 
parasitic behavior of some cuckoo species in combination with 
the Levy flight behavior of some birds and fruit flies [9]. There are 
three rules to implement this algorithm: each cuckoo lay one egg at 
a time and dump its egg in randomly chosen nest. The egg in a nest 
represents a solution and cuckoo egg represents a new solution for 
the process of the optimization problem. Like the other methods, 
the best solution (best nest) is transferred to the next generations. 
The number of available host nests is fixed, and the egg laid by a 
cuckoo is discovered by the host bird with a probability. Ant Colony 
Optimization mimics the behavior of ants to find shortest paths 
between their colony and food sources. The main parameters of this 
algorithm are: ant, pheromone, daemon action, and decentralized 
control. The pheromones are dropped by the ants traveling for 
food. The path marked by the high intensity of the trail which is 
the global memory of the system is chosen by ants. Daemon actions 
are used to gather global and the decentralized control is used in 
order to make the algorithm robust and flexible within a dynamic 
environment [10,27].

Jaya is a new optimization algorithm. This algorithm starts an 
initial randomly created population (feasible solution sets). The 
best and the worst solutions are determined based on the objective 
function. The new individuals (solution) are generated in the 
neighborhood of the best solution by avoiding the worst solution. 
The implementation of this algorithm is so easy. The algorithm 
strives to become victorious by reaching the best solution and 
hence it is named as Jaya (a Sanskrit word meaning victory) [11]. 

Firefly algorithm is based on the idealized behavior of the flashing 
characteristics of fireflies [12]. In nature, the firefly flashes as a 
signal to affect the others firefly. In FA, this natural phenomenon 
of firefly is formulated as a meta-heuristic algorithm depending 
on following three rules [28,29]: 1-All fireflies are affected by each 
other without respect to their sex.2- Attractiveness is proportional 
to its brightness. 3- If there are no brighter fireflies than a 
particular firefly, it will move randomly in the space. The light 
absorption coefficient the randomization control factor and the 
size of population are the main control parameter of this algorithm. 
Simulated Annealing mimics the random behavior of molecules 
during an annealing process, which involves slow cooling from 
a high temperature [13,30]. SA starts an initial solution called 
parent. This parent is updated by some manner in the optimization 
process to set of offspring. Among the offspring the best one can 
be a candidate to challenge its parent. According to the objective 
function, if the candidate is better than its parent, the parent is 
replaced by the candidate. That is, the candidate has a minimum 
value of objective function. Thus, the best solution is always kept 
along the optimization process. Cultural Algorithm is inspired by 
the principle of cultural evolution. A set of traits and generalized 
description of individual’s experiences are used to describe the 
individuals. There are some parameters such as outlining, dominant 
belief, acceptance and selection to update the individual for the next 
generation in CA [14]. For example, through an acceptance function, 
the experiences of individuals in the population space are used to 
generate problem solving knowledge that is to be stored in the belief 
space [31]. Differential Evolution is a parallel direct search [15]. 
Like the other evolution algorithms, DE uses an initial population. 
There are two main components in the optimization process of CA: 
mutation and crossover. Through mutation operator DE generates 
new parameter vectors by adding the weighted difference between 
two population vectors to a third vector. Parameter mixing is called 
as crossover. The feasible solution is generated by two components 
for the next generation.

League championship algorithm is based on the championship 
process in a sport league. The terms “league” represents the 
population, “team” represents the individual, “team formation” 
represents a solution, “week” represents the iteration, and “playing 
strength” represents the value of objective function in the process 
of the optimization problem [16]. In LCA, there are six rules to 
implement the algorithms. Like other population-based algorithms. 
This algorithm uses an initial process ad update the population in 
each week to reach the optimal solutions. Backtracking Search 
Algorithm have five main components to find optimal solutions. 
These are initialization, selection-I, mutation, crossover and 
selection-II [17]. In the initialization phase, the size and dimensions 
of the optimization problem are created. Selection-I phase 
determines the historical population using the memory. Initial 
and final form of the trial population is generated by the mutation 
process and crossover process, respectively. In the Selection-II 
phase, the best individual is accepted as global solution if its value 
of objective function is better than the one obtained throughout 
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optimization process. Glowworm Swarm Optimization mimics 
the behavior of glowworms which are represented by a feasible 
solution set (individual of population). These are randomly placed 
in the solution space [18,32]. Glowworms contain a luminescent 
quantity called luciferin. The intensity of luciferin determines the 
value of the objective function of the optimization problem. So, the 
individual with highest density of luciferin can be defined as the 
best solution in GSO. In GSO, the glowworms are in interaction with 
their neighbors and move toward the brighter glowworm using a 
probabilistic mechanism. According to the value of the objective 
function, the individuals are updated to create new individuals by 
the hope that to find global solutions.

Application of Optimization Algorithm for Civil 
Engineering Problems

In this section, the literature review related to the optimization 
problems on the different divisions of the civil engineering in last 
decades is presented. These problems are categorized as Structural, 
Mechanical, Hydraulics, Construction Management, Transportation, 
and Geotechnical.

Optimization in geotechnical problems

Optimization problem was carried out in many fields of 
geotechnical engineering such as, earth-retaining walls, reinforced 
concrete shear-walls, and slope stability prediction. The studies 
presented in recent years using different optimization algorithms 
for this field are given below. Yepes et al. [33] presented a 
parametric study on optimization of earth-retaining walls. They 
used SA algorithm to optimize the walls from 4 to 10 m in height 
for different fills and bearing conditions. The design variables 
of their problem are the geometrical properties of the wall, 
material types and the reinforcement set-up. The cost function is 
considered as the objective function. In the structural analysis of 
the wall overturning, sliding and ground stresses are taken into 
account as structural limit. Their study estimates the relative 
importance of factors such as the limitation of kerb deflections 
and base friction coefficient. At the end of their study, the authors 
reported the upper bound of 50 kg/m3 of reinforcement in the 
kerb and 60 kg/m3 for the overall wall. Atabay [34] used the GA 
to optimize 3D-dimensional beamless reinforced concrete shear-
wall systems. In this study, the total material cost function is used 
as the objective function and constraints of structural optimization 
problem are taken into account according to the requirements of 
the reinforcement concrete specification (TS500) and the seismic 
code of Turkey which is put into effect on 1998. Structural system is 
analyzed by GENOPT which was developed by the author. By using 
this program, 13-floored beamless structure was optimized. In the 
conclusion of the study, the author stated that the GENOPT not only 
valid for the cost optimization of shear-wall reinforced concrete 
structure sys but also is valid for the many reinforced concrete 
structure systems. Pei & Xia [35] presented a study on the design of 
reinforced cantilever retaining walls using heuristic optimization 
algorithms which are the genetic algorithm (GA), particle swarm 
optimization (PSO) and simulated annealing (SA). The constraints 

of this optimization problem are the design requirements and 
geometrical constraints. To carry out the optimization process 25 
constraints are established, and 9 parameters are selected by the 
authors. The objective function of the problem is the cost function 
of the cantilever retaining wall including the cost of concrete and 
reinforcement per linear meter. This study was previously presented 
in the International Conference on Structural Computation and 
Geotechnical Mechanics in 2012. 

Hosseinzadeh & Joosse [36] reported the design optimization 
of the retaining walls in narrow trenches. The authors developed 
an environmentally-friendly method for economic design and 
optimization of retaining wall. Their study includes both analytical 
and numerical methods. To investigate the behavior of overlapping 
passive zones and its impact on the passive soil resistance capacity 
are the main purpose of this study. In the finite element analysis, 
the Plaxis programme is preferred by the authors. The author is 
also carried out the sensitivity analyses with respect to prescribed 
displacement, interface geometry, soil/wall friction, mesh 
refinement, boundary conditions, unloading–reloading Poisson’s 
ratio and soil stiffness. At the end of their study, the authors 
point out that the developed model can be used as reference for 
reproducing the results for homogeneous soil layering in fully 
drained conditions. Sadoglu [37] examined the design optimization 
of symmetrical gravity retaining walls. The design of the wall was 
carried according to the Building Code Requirements for Structural 
Concrete (ACI 318-99). To reduce the costs of the total wall, the 
cross-sections area of the wall is selected as an objective function 
by the author. The problem is solved by developing computer 
program-based interior point method. The constraint of this 
optimization problem are design constraints, bending verification 
constraints, bearing capacity constraint, shear verification 
constraints, total vertical forces within the middle third of the 
base constraint, sliding constraint and the overturning constraint. 
Khajehzadeh et al. [38] presented a study on the economic design 
of retaining wall using particle swarm optimization with passive 
congregation. The authors developed a computer program in 
MATLAB using PSOPC (particle swarm optimization with passive 
congregation which was proposed originally by He et al. [39]). This 
program is only required to feed the input parameters like soil and 
material properties and safety factors. They used the cost of the 
retaining wall as an objective function and taken into account the 
penalty function method to applying the constraints which are the 
geotechnical and structural design limits. The cost of the total wall 
consists of the unit price of concrete, excavation, backfill, formwork, 
and reinforcement. Das et al. [40] used the elitist non-dominated 
sorting genetic algorithm (NSGA-II) for the optimum design of 
retaining wall. They considered both cost and the factor of safety 
at the same time in the optimization process of the wall and carried 
out the multi-objective optimization approach. So, they obtained of 
effective Pareto optimal solutions instead of a single solution. The 
structural stability is the constraint of the optimization process 
for this study. The authors obtained both suitable FOS and the 
corresponding cost the corresponding footing dimensions and 
percentage of reinforcement.
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Tonne & Mohite [41] optimized the counterfort retaining wall 
with relief shelf. In generally, height of 6 m is suitable and economic 
for the cantilever retaining wall. But it becomes uneconomical above 
this height. To support more height of earth mass advancement is 
done in cantilever retaining wall by adding relief shelf in it. In the 
view of this idea, the authors realized an optimization process. They 
point out that counterfort retaining wall of heights 10 m, 12 m, and 
15 m with relief shelf at h/2 (h: height of stem) gets minimum earth 
pressure, minimum overturning moment and better stability. Thus, 
the cost function of the related problem will be reduced. Singla & 
Gupta [42] studied on three types of the wall which are cantilever 
retaining wall, counterfort retaining wall and retaining wall with 
relieving platforms. They used cost function as an objective function 
of the optimized problem. The cost function consists of the volume 
of concrete and the amount of steel. The constraints of the problem 
are eccentricity, factor of safety against overturning and sliding, the 
maximum and minimum bearing pressure, maximum and minimum 
reinforcement percentage, reinforcement spacing and maximum 
shear stress. The authors concluded that among all the cases the 
optimal cost required is least in case of retaining wall with relieving 
platform. Gandomi et al. [43] presented a study by using some 
resent optimization techniques: These are the accelerated particle 
swarm optimization (APSO), firefly algorithm (FA), and cuckoo 
search (CS). The authors aimed to optimize the cantilever retaining 
wall based on the ACI 318-05 procedure. The design variables are 
continuous for wall geometry and discrete for steel reinforcement. 
The overturning, sliding, and bearing capacity failure modes are 
the geometrical constraint and the shear and moment failure at the 
stem, heel, toe, and shear key are the structural design constraint 
of the optimization problem. Sable and Archana [44] used the 
“optimtool” in MATLAB to find the minimum cost and weight for 
concrete retaining walls. The overturning, sliding, and bearing 
stress are the constraint of the problem. The authors categorized 
to the design variables in two groups: geometric dimensions of wall 
cross-section and steel reinforcement. Geometric design variables 
can be continuous or discrete values. But steel reinforcement 
variables are discrete. Sheikholeslami et al. [45] combined the 
firefly algorithm (FA) and harmony search (HS) technique (IFA–HS) 
to solve design problems of reinforced concrete retaining walls. In 
this new technique, the HS operators are integrated into the FA. 
The authors used the IFA–HS to optimize the reinforced concrete 
retaining walls. The costs of concrete and steel reinforcement 
are taken into account as an objective function. Factor of safety, 
stability, and material properties of the wall are the constraints of 
the optimization problem carried out by the authors. At the end of 
the study, the authors concluded that the IFA–HS algorithm was 
both computationally efficient and capable of generating least–cost 
retaining wall designs.

Babu & Basha [46] studied on the optimum design of cantilever 
retaining walls using target reliability approach. To design the wall 
the overturning, sliding, eccentricity, bearing, shear and moment 
capacity of toe slab, heel slab, and stem are taken into account the 
limit parameters of the problem. In this study, the authors gave 

detailed information about the structural analysis of the retaining 
wall. The authors of this paper stated that if the backfill material 
is well engineered and if the coefficient of variation is less, then a 
considerable amount of savings in concrete can be achieved. Babu 
and Basha [47] presented another study on the optimum design of 
cantilever sheet pile walls in sandy soils using inverse reliability 
approach. Al-Shukur & Al-Rammahi [48] presented a study on the 
optimum design of semi-gravity retaining wall subjected to static 
and seismic loads. They used the ANSYS to realize the finite element 
modeling of the wall‒backfill‒foundation interaction model. The 
objective function of the problem is the minimization of the cross-
sectional area of the retaining wall. The geometric properties of the 
wall are selected as design variables. The authors compared the 
results obtained by using zero-order optimization method in ANSYS 
with the results obtained by using the optimization techniques GA, 
PSO, and CSS. Deb & Dhar [49] used multi-objective optimization 
technique to design stone column-improved soft soil. The Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) is carried out 
by the authors. NSGA-II was firstly proposed by the Deb [50]. The 
authors presented two models named as OMF-I and OMF-II. In 
OMF-I, there were two objectives; the minimization of maximum 
settlement over space and the minimization of differential 
settlement over space. In OMF-II, the objective function is the 
same with the OMF-II, but there is an additional objective function 
which is maximization of the average degree of consolidation. 
Jasim & Al-Yaqoobi [51] made a study on Optimum Design of Tied 
Back Retaining Wall. The authors used the GA in the optimtool of 
Matlab to design the wall. The design variables of this study are 
the geometric dimensions and the amounts of reinforcement. The 
bending moment and shear force capacities, and some of the other 
measures are taken into account the constraint of the problem. At 
the end of the study, the authors concluded that the increase of the 
allowable stress of tie steel leads to the decrease of the minimum 
cost. 

Optimization in transportation Problems

Transportation becomes possible the communication 
between and within towns, cities or communities to develop of 
the civilization. It deals with the planning, designing, constructing, 
operating of the road, highway, railway, traffic, infrastructures and 
so on. Sustainability concept considering economic, social and 
environmental factors together has been also recently implemented 
in this area. Optimization defined as finding of the optimal 
solution satisfying some criterion has been also carried out in the 
transportation. In this subsection, it is presented some research 
papers which were studied in this engineering field. Putha et al. [52] 
applied ACO algorithm to solve the oversaturated network traffic 
signal coordination problem. They identified timing strategies of 
two example network using the proposed algorithm. One of two 
models networks examined in [52] was taken from the technical 
literature while other was an actual traffic network model of the 
City of Fort Worth traffic signal network. And the obtained results 
were compared with the previous studies which were employed 
GA to solve the oversaturated signal coordination problem. Finally, 
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it was concluded that for the higher number of model executions, 
ACO become a good alternative to solve the problem of signal 
coordination for oversaturated traffic networks. Marti et al. [53] 
described a procedure to obtain the economic cost of pre-stressed 
concrete precast road bridges. Their algorithm employed a variant 
of SA as a solver. Optimization problem of double U-shaped cross-
section and isosatic spans bridges was described with 59 discrete 
design variables including the geometry of the beam and the 
slab, materials in the two elements, as well as active and passive 
reinforcement. Depending on the results obtained in [53], it was 
expressed that different economic scenarios for steel and concrete 
costs affect the properties of the cost-optimized bridges. Carbonell 
et al. [54] handled cost minimization problem of reinforced concrete 
vaults in road construction. Three heuristic optimization methods 
were implemented to conduct optimization process. One of three 
methods is SA. For the optimization problem, the cost of the vaults 
was taken as objective function while 49 discrete design variables 
were considered. Applying the three optimization algorithms, 10% 
cost saving was obtained for the vault of 12.40 m of horizontal 
free span, 3.00 m of vertical height of the lateral walls and 1.00 
m of earth cover with respect to its traditional design. Among the 
applied optimization algorithms, SA outperformed over others in 
terms of best results. 

Martinez et al. [55] described a methodology to determine 
the most economical tall bridge piers used in deep valley bridge 
viaducts. For the economical design, three different types of 
rectangular hollow tall piers were examined for road piers of 90.0m 
in height. To solve the combinatorial problem, a variant of ACO 
was carried out. Numerical results obtained by implementing ACO 
algorithm indicated that the unit price of the internal formwork 
influenced by the cost of piers, and a type of pier denoted as 
RTRA90 was found the most economic pier satisfying the design 
constraints. Garcia-Segura et al. [56] considered the effects of 
the cost, the safety, and the corrosion initiation time together to 
optimally design post-tensioned concrete box-girder road bridges. 
The cross-section geometry, the concrete grade, and the reinforcing 
and post-tensioning steel of the deck were adopted as design 
variables. To decrease the computational effort taking more time 
for the finite-element analysis of the bridge and also to attain an 
increment of evaluating the conflicting objectives an integrated 
multi objective HS with artificial neural networks was proposed. 
The proposed methodology offers trade-off solutions that satisfy 
comparatively each need for the decision maker. Stevanovic et 
al. [57] addressed the importance of reducing excessive fuel 
consumption and vehicular emission on urban streets. To handle 
this problem traditionally signal timing is optimized. They 
proposed a tool based on integrating of three previously developed 
tools called as VISSIM, CMEM, and VISGAOST to optimize signal 
timings and minimizing fuel consumption and CO2 emission. A 
14-intersection network in Park City, Utah was considered as a case 
study and two major objectives; i) comparison of estimated of the 
fuel consumption, and ii) minimize vehicular emissions were taken 
into consideration for the VISGAOST optimization of signal timing. 

Numerical results demonstrated that the commonly used formula 
to estimate fuel consumption has not produced a reliable objective 
function value for the signal timing optimization. Lhee et al. [58] 
proposed a new approach to predict the owner’s cost contingency, 
which has a significant impact on project financial success 
and other organizational activities critical, on transportation 
construction projects. To accomplish this, aim an optimization 
algorithm based on PSO was used. Evaluation of the PSO-based 
prediction model was tested on data collected from 492 Florida 
Department of Transportation projects completed from 2004 to 
2006. Its performance was compared with an existing ANN-based 
approach. The PSO-based prediction model developed in this study 
has potential for forecasting problems such as estimating cost 
contingency.

Sabatino et al. [59] proposed a framework to eliminate the 
effect of structural failure of highway bridges on the economy, 
society, and the environment. Sustainability and maintenance in 
the optimization model were treated to provide decision-support 
framework to decision makers in order to balance conflicting 
objectives. GA based optimization procedure was used to reach the 
optimal solution in terms of maintenance interventions. The validity 
of the proposed approach was tested on an existing highway bridge 
located in Colorado. The framework is able to aid decision making 
concerning maintenance actions of highway bridges. Barone et 
al. [60] addressed deterioration process resulting from multiple 
mechanical and environmental conditions for civil infrastructures 
and indicated the proposal of life-cycle optimization techniques 
supply a rational approach to manage these structure systems. To 
this end, they developed a novel optimization procedure for life-
cycle inspection and maintenance planning of aging structures. 
Bi-objective optimization procedure defining as minimization the 
maximum expected annual system failure and expected total cost of 
inspection and maintenance plans solved by means of GA. Findings 
obtained demonstrated that the proposed approach is efficient 
for the optimal life-cycle maintenance scheduling of deteriorating 
systems. Cai and Aref [61] stated some technical cumbersome 
resulting from increasing span of cable-stayed bridge and using 
traditional materials have not produced satisfactorily results to 
relieve these technical challenges. They developed a GA-based 
optimization procedure to cope with this problem. The proposed 
procedure was able to find the optimal distribution of fiber 
reinforced polymeric composites for the deck and cable system of 
cable-stayed bridges. Numerical experiments shown that optimal 
combination of hybrid glass FRP-concrete deck and carbon FRP-
steel cable systems offers 33 and 12% performance improvement 
on the static and aerodynamic behavior of cable-stayed bridges. Cai 
and Aref [62] addressed usage of carbon fiber reinforced polymeric 
(CFRP) materials as an alternative to the traditional materials for 
long-span cable-stayed bridges. As in [61], they also implemented 
a GA-based optimization procedure to find optimal combination of 
CFRP composites with steel. Unlike [61] which were carried out a 
multi-objective optimization, single objective being maximization 
of the critical flutter velocity was adopted in [62] for the 
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optimization process. It was concluded that optimal combination 
of CFRP and steel caused to maximize the flutter performance of 
cable-stayed bridges. Chen et al. [63] applied IPSO and GA-based 
algorithm to determine the form-finding analysis of a suspension 
bridge installation. A form-finding analysis for the main span of 
the Yingwuzhou Yangtze River Bridge was conducted employing 
the stated optimization algorithms, and the proposed a novel 
IPSO-based form-finding method for suspension bridge design and 
construction overcomes shortcomings of the conventional form-
finding methods.

Silva et al. [64] addressed the importance of the environmental 
and operational effects on the structures, which result in some 
deterioration of structures. They proposed a novel damage 
detection method based on unsupervised and nonparametric 
GA to specify the damage in bridges arising from the presence 
of environmental and operational influences. The GA was also 
strengthened by a novel concentric hyper sphere algorithm. The 
capabilities of the method were investigated on the structural 
damage detection process of two ridges: Z-24 Bridge and Tamar 
Bridge. Findings showed the robustness and effectiveness of the 
proposed approach on detecting the damage on bridge system. Liu 
& Chang [65] presented a GA-based solution procedure to optimize 
an arterial signal problem. According to the traffic patterns obtained 
from the end of the optimization procedure, one of two alternatives 
indicating as either minimizing the total travel time or maximizing 
the total throughput over the target area for the control objective can 
be chosen. Experimental analyses carried out an example arterial 
of four intersections by using the GA-based solution approach 
demonstrated the effectiveness of it in design of arterial signals, 
especially under congested, high demand traffic conditions. Hu & Liu 
[66] proposed offset optimization model based on GA and objective 
of which was to minimize total delay for the main coordinated 
direction and to consider the performance of the opposite direction 
at the same time. The proposed methodology was examined on 
a main arterial (TH55) in Minessota, and it was able to achieve 
decreasing the travel delay of coordinated direction significantly 
without compromising the performance of the opposite approach. 
Sharma & Kumari [67] conducted a literature survey regarding 
the utilization of the ACO, BFO, and PSO algorithms in traffic route 
optimization. ACO was employed in generally traffic controlling 
and reducing vehicle collisions, optimization of a rail vehicle floor 
sandwich panel, and vehicle routing design. On the other hands, 
as comparing the other techniques PSO was able to decrease the 
computational complexity, and to increase the convergence of the 
traffic path and more complex path choice models. 

Xiao et al. [68] investigated the optimal adjustments of 
gradation, method of composite modification, and compaction 
checking in order to enhance the high-temperature performance of 
the asphalt–rubber mixture. Through these optimal adjustments, 
they reached improvement considerably on the dynamic 
stability and relative deformation indices of the asphalt–rubber 
mixture. The numerical examples demonstrated that the optimal 
adjustment was for 12 round-trip for the rolling time and 180-190 

°C for the compaction temperature of the asphalt-rubber mixture. 
Ghanizadeh [69] developed an optimization model to specify the 
optimal combination and thickness of different pavement layers 
that is one of the costly parts of transportation infrastructures. The 
implementations obtained from the use of proposed optimization 
model address that application of asphalt treated layer in pavement 
structure was not cost effective, and also with increasing the 
strength of subgrade soil, the subbase layer might be taken out 
from the optimum structure of pavement. Santos & Ferreira 
[70] programmed an optimization model allowing pavement 
performance for Life Cycle Cost Analysis (LCCA) to offer the best 
pavement structure for a road or highway for the designers. OPTIPAV 
developed tool for this aim was utilized for obtaining LCCA solution 
of flexible pavements under the serviceability conditions adopted 
in AASHTO. The applications of the new system indicated that it is 
satisfactorily alternative tool for the road engineer’s toolbox.

Optimization in construction managements problems

Construction engineering and management as field of 
engineering might be summarily defined as planning projects, 
estimating and controlling costs, administering contracts, 
organizing construction sites, managing construction process, 
optimizing site activities. In order to respond to this need, the 
professionals use advanced management techniques. Generally 
speaking, it might be stated for this engineering field that 
optimization models were developed and applied to determine 
the optimal adjustment of time, cost, quality, environment, safety, 
and so on. Some of these implementations are addressed in this 
subsection as follow. Koo et al. [71] expressed difficulty of making 
decision under the diverse conditions, like time, cost, quality, etc. in 
case of the construction projects getting larger. They developed an 
integrated Multi-Objective Optimization (iMOO) model employing 
GA as an optimization algorithm. The robustness and reliability 
of the proposed model were evaluated on the construction time-
cost trade-off problem. The model is capable of handling of more 
than two objectives and using four types of fitness evaluation 
functions. It might be applied in other areas, i.e. energy use. Azeez 
& Alsaffar [72] utilized ACO algorithm as an optimizer for the time-
cost optimization problem encountered in the field of construction 
project management in order to obtain a balance between two 
complex objectives (cost and time). The created model applied 
on a construction project including 7 activities which contains 
4860 possible solutions. By means of optimization process, they 
obtained 54.4% and 15% reduction on time and cost, respectively 
for the tested example. Aziz et al. [73] suggested a model to the 
construction planners to find an optimal adjustment to resource 
allocation in order to minimize project duration and its cost. The 
model is also capable of taking for the maximization of quality. It 
integrates the features of CPM and GA to optimize the construction 
total time, total cost, and total quality. Model validation was 
examined on a case study including 18 construction activities, and 
the created model enables satisfactorily decrease in three main 
tasks (time, cost and quality) considered simultaneously for a 
construction project. Narayanan & Suribabu [74] used DE algorithm 
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to reach a solution among the challenging alternatives of time, cost 
and quality for construction project. The suggested approach was 
implemented for two multi-objective time-cost-quality problems. 
First one consists of seven while other 18 construction activities. 
Comparing with existing ones, the presented approach was able 
to generate best optimal solution for construction multi-objective 
optimization problems that minimize time and cost of the projects 
while maximizing quality.

Zhang & Li [75] emphasized significance tradeoff between time 
and cost mutually linked for a construction project. They developed 
a PSO-based multi-objective optimization to determine an optimal 
set of activity methods with the objectives of minimizing project 
duration and total cost. To verify the performance of the proposed 
model two examples previously introduced were adopted. Solution 
of these 7 and 18 activities demonstrated that the developed 
model provides an alternative solving methodology for time-cost 
tradeoff problem. Elbeltagi et al. [76] aimed to optimize a project 
scheduling problem including all design criteria such as time, cost, 
resource, and cash flow. For this purpose, they developed a multi-
objectives overall optimization model based on PSO for project 
scheduling problem. The model was corrected on project divided 
in to 24 major activities. Numerical experiments carried out for 
a real-life case study construction example demonstrated that 
multi-objectvie PSO technique was able to produce results each 
of all offers satisfactory alternative solution for multi-objective 
optimization of construction projects. Bettemir & Birgönül [77] 
discussed advantage and disadvantages of heuristic, meta-heuristic 
algorithms and exact method used for solving time-cost trade-off 
problem. They proposed a network analysis algorithm based on 
minimum cost-slope concept to optimize discrete time-cost trade-
off problem. The network analysis algorithm was examined on 18 
and 63 activity projects, and it was concluded that computational 
demand of the proposed approach to find the optimum or near-
optimum solution is significantly lower than the meta-heuristic 
algorithms. Afshar et al. [78] introduced a new multi-colony 
ACO algorithm to tackle the time-cost trade-off problems. They 
embedded an innovative solution exchange strategy in their model 
in order to suggest more alternative solutions concerning in time-
cost trade-off problems for the decision makers. The proposed 
algorithm was tested on an 18-activity time-cost problem, and 
it outperformed over the weighted approach to determine the 
nondominated solutions in a combinatorial optimization problem. 
Aminbakhsh & Sonmez [79,80] developed a novel PSO-based 
multi-objective optimization environment enhanced with some 
novel principles such as particle representation, position-updating 
to solve the discrete time-cost trade-off problem for medium and 
large-scale construction projects. Some computational experiments 
were conducted on different construction projects varying from 
18 to 630 activities, and the results shown that the new method 
outperforms the state-of-the-art methods, both in terms of the 
solution quality and computation time. Sonmez & Bettemir [81] 
introduced a hybrid strategy combined useful features of GA, SA, 
and QSA for the discrete time-cost trade-off problem. Hybridization 

scheme takes advantage of SA for enhancing hill-climbing ability of 
GA, while QSA is used to improve local search capability. The hybrid 
algorithm was proved on test problems with a range of 18 to 630 
activities. Based on the numerical results, it might be expressed 
that the hybrid strategy is a good option to be employed for the 
solution of discrete time-cost trade-off problem.

Zhang & Ng [82,83] developed an ACO based decision support 
system to solve the Multiobjective time-cost optimization problems. 
They linked ACO algorithm to Microsoft Project via Visual Basic 
for Application, and a test project consisting of 18 activities was 
investigated to demonstrate the performance of the proposed 
model. ACO-based model finds better solution for the test study with 
less computational effort. Geem [84] utilized a HS algorithm to carry 
out bi-objective optimization problems, which take into account the 
relationship between time and cost being correlated. HS algorithm 
was applied two networks of up to 18-activities, and effectiveness 
of Pareto solutions obtained using HS were compared with those 
found by GA and ACO. Although the test cases were small scale 
projects, the implementation proposed model was anticipated that 
it can be used to solve the large-scale networks. Magalhaes-Mendes 
[85] proposed a hybrid GA to solve optimization problem including 
time, cost, and quality simultaneously as objectives. The robustness 
of the proposed model was tested on a small-scale test project 
consisting of 7-acticvity and compared with ACO and DE algorithms 
developed in advance to solve multi-objective optimization 
problems. The presented approach provided alternative for the 
solution of construction multi-objective optimization problems. 
Rostami et al. [86] stated that solution methods proposed for 
project scheduling problem lose their efficiencies as the dimension 
of the problem is getting bigger. They developed two algorithms, 
one of which is an enhanced GA, to tackle this mentioned loss of 
efficiency. The proposed models were employed in the solution of 
projects with 30, 60, 90 and 120 activities. Computational results 
indicated that the improved GA was capable of solving the majority 
of the problems investigated in their study with less error than 
other metaheuristic methods. Monghasemi et al. [87] applied 
an evidential reasoning approach for the first time in the field of 
project scheduling to determine the best solutions in the Pareto 
set for discrete time-cost-quality trade-off problems. The proposed 
model realized on a highway construction project and it shown 
efficiency in examining the performance of each scheduling option 
according to multiple time, cost, and quality criteria. 

Choddousi et al. [88] addressed intercompabilities of the cost 
and duration of the activities and allocated resources and resource 
leveling. Therefore, they together adopted the problems known 
as resource-constrained project scheduling problem, discrete 
time–cost trade-off problem, and resource allocation and resource 
leveling problem in their optimization model. Application of the 
model demonstrated that model provides more practical solutions 
in terms of resource allocation and leveling. Tavana et al. [89] 
proposed a new multi-objective multi-mode model for solving 
discrete time-cost-quality trade-off problems with preemption 
and generalized precedence relations. Adding of preemption 
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and generalized precedence relations in project scheduling 
problems made the problem investigated more appropriate with 
real-life projects. Zamarrón-Mieza et al. [90] recently reviewed 
the application of multi-criteria decision analysis for aging-dam 
management. Multi-Attribute Decision Making techniques had a 
major presence under the single approach, especially the Analytic 
Hierarchy Process, and its combination with Technique for Order of 
Preference by Similarity to Ideal Solution was prominent under the 
hybrid approach; while a high variety of complementary techniques 
was identified. A growing hybridization and fuzzification are 
the two most relevant trends observed. The integration of 
stakeholders within the decision-making process and the inclusion 
of trade-offs and interactions between components within the 
evaluation model must receive a deeper exploration. Despite the 
progressive consolidation of Multi-Criteria Decision Making in 
dam management, further research is required to differentiate 
between rational and intuitive decision processes. Additionally, the 
need to address benefits, opportunities, costs and risks related to 
repair, upgrading or removal measures in aging dams suggests the 
Analytic Network Process, not yet explored under this approach, 
as an interesting path worth investigating. Penadés-Plà et al. [91] 
examines 77 journal articles of multi-criteria decision-making 
methods at each life-cycle phase of a bridge, from design to recycling 
or demolition. This investigation showed the use of different 
methods in the decision-making phases of sustainable bridges. 
In addition, the differences between multi-attribute and multi-
objective decision-making were explained, showing examples of 
multi-objective decision-making. The criteria and methods applied 
to each life-cycle phase, as described by the authors, are indicated. 
Finally, a statistical study was carried out to show trends between 
the methods and the life-cycle phases.

Optimization in hydraulic problems

Optimization of drinking water, water distribution system 
expansion, groundwater pollution source identification, reducing 
background leakage, estimates of energy consumption, designing 
water networks, modeling discharge–sediment relationship are the 
simple application of optimization on the hydraulic problems. The 
studies presented in recent years using optimization algorithms for 
hydraulic problems are given below. Bayram et al. [92] studied the 
viability of teaching–learning based optimization (TLBO) algorithm 
for the first time in the estimation of the stream dissolved oxygen 
(DO) concentration. They also compared the validity of TLBO 
algorithm with those of the artificial bee colony algorithm as 
well as the conventional regression analysis techniques. It was 
seen that the TLBO algorithm provided better estimation, with 
an improvement of nearly 20%. They deduced that the equations 
derived by using the TLBO algorithms estimate the stream DO 
concentration successfully. Morleya & Tricaricob [93] compared the 
population-based optimization techniques for water distribution 
system expansion and operation. They formulated the problem 
as single and multiple-objective optimization problems. For the 
multiple-objective optimization the Non-dominated Sorting–II 
(NDS-II) approach is preferred. The objectives functions of the 

problem are the total cost (pipe replacement and duplications, tank, 
pump and valve installation, and annual operational) and Leakage 
(the absolute annual volume of water lost as leakage). The authors 
compared the results obtained by NSGA-II (Non-dominated Sorting 
Genetic Algorithm) and Omni-Optimizer (OO). A similar study is 
made by Arandia et al. [94]. Irani & Nasimi [95] presented a study 
on the application of artificial bee colony-based neural network 
in bottom hole pressure prediction in underbalanced drilling. To 
improve the efficiency and prediction capability of artificial neural 
network the artificial bee colony is integrated to the ANN by the 
authors. The performance of the model proposed by the authors was 
evaluated using mean square error (MSE) and efficiency coefficient 
R2. When the authors compared the measured and predicted value 
for bottom hole circulating pressure (BHCP), a good agreement was 
obtained. A similar study using ANN with ABC is made by Kisi et al. 
[96]. They investigated the accuracy of artificial neural networks 
(ANN) with artificial bee colony (ABC) algorithm for modeling 
discharge-suspended sediment relationship. 

Uzlu et al. [97] applied the ANN (artificial neural network) 
model with the teaching-learning-based optimization algorithm 
to estimate energy consumption in Turkey. The TLBO algorithm 
was first time applied such a study by the authors. The energy 
consumption of Turkey until 2020 was obtained by the ANN-TLBO 
model. The authors concluded that the future energy consumption 
of Turkey would vary between 142.65 and 158.00 Mtoe in 2020. 
Karbasi [98] investigated the applicability of TLBO algorithm for the 
modeling hydraulic jump length over a smooth horizontal bed. The 
author used linear, quadratic, power and exponential regression 
forms in the TLBO. The hydraulic jump data was taken from 
USBR reports. At the end of the study, the author concluded that 
the TLBO based models had good agreements with the measured 
experimental data. Blinco et al. [99] used the genetic algorithm 
optimization of operational costs and greenhouse gas emissions for 
water distribution systems. This study was previously presented 
in the 16th Conference on Water Distribution System Analysis, in 
2014.The main purpose of the study is to minimize the operational 
greenhouse gas (GHG) emissions. The model prepared by the 
authors was linked to hydraulic simulation software EPANET and 
a Microsoft Excel interface. In this study there are more than one 
objective function such as cost, energy and GHG emissions. Quiniou 
et al. [100] dealt with optimization of drinking water and sewer 
hydraulic management. They used the non-dominated sorting 
genetic algorithm to solve multi-objective optimization problem. 
The objective functions of the authors’ problem are: “energy cost” 
and “water purchase and production cost”. The constraint of the 
problem are: Maximum water purchase capacity – purchase, Time 
of exceeding of minimum volume of storage in tanks, number of 
tanks without conservation of level on 24 hours and number of 
pumps over maximum frequency of starting/stopping pumps. 
Peralta et al. [101] made a study on the multi-objective genetic 
algorithm conjunctive use optimization for production, cost, and 
energy with dynamic return flow. The main objective functions 
used this study are: maximizing water provided from sources, 
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maximizing hydropower production, and minimizing operation 
costs of transporting water from sources to destinations. The 
authors used the non-dominated sorting approach to find Pareto 
optimal solutions set for the multi-objective optimization problem 
and used substitute simulators during optimization to reduce 
computational effort.

Fayad et al. [102] presented a simulation/optimization (S-
O) model doing that via artificial neural network simulators and 
genetic algorithm optimizer for multi-objective conjunctive water 
use problems. The design variables of the optimization problem are 
spatially distributed groundwater pumping, reservoir diversion, 
stream diversion, and reservoir release rates. The upper and the 
lower bound of the design’s variables are taken into account as 
constraint of the optimization problem. There were two objective 
functions. The first one is the maximization of average water 
provided from pumping wells, stream diversions, and reservoir 
diversion. The second objective function is the maximization of 
hydropower production by maximizing reservoir releases thru 
the turbine. Bahrami et al. [103] used the simulated annealing 
and genetic algorithm to solve groundwater inflow problem to an 
advancing open pit mine. The authors developed a hybrid model 
by using artificial neural network (ANN) with the GA and SA. The 
authors used the MATLAB software to carry out their purpose 
and used the SEEP/W package to verify the accuracy of these 
hybrid models. At the end of their study, the authors concluded 
that the ANN–GA, ANN–SA and numerical models results all have 
a good fit with the field data, but the ANN–GA model shows the 
best correlation. Luo et al. [104] presented a study by using the 
harmony search for the optimal design of groundwater remediation 
system. They developed a new probabilistic multi-objective fast 
harmony search algorithm (PMOFHS). The objective functions of 
the study are: minimization of the total remediation cost through 
the engineering planning horizon, and minimization of the mass 
remaining in the aquifer at the end of the operational period. 
The authors also used the Monte Carlo (MC) analysis to evaluate 
the effectiveness of the proposed methodology. Yang et al. [105] 
examined the tabu search algorithm for the multi-objective optimal 
design of groundwater remediation systems. They developed a 
new multi-objective optimization method called the niched Pareto 
tabu search (NPTS). The objective functions of the problem are 
the minimizations of both remediation cost and contaminant 
mass remaining in the aquifer. The authors concluded that for a 
separate optimization model run, compared with the NSGA-II, the 
NPT S reduces the runtime by 21.5%. Yaseen et al. [106] used the 
firefly algorithm with the Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS) for stream flow forecasting. The authors used the historical 
monthly stream flow data for Pahang River. The results of this study 
also show that the ANFIS-FFA is not only superior to the ANFIS 
model but also exhibits a parsimonious modeling framework for 
stream flow forecasting.

Optimization in structural problems

Structural optimization can be classified into three classes of 
problems, although some problems usually fall into more than one. 

The first is the dimensional optimization with consider as design 
variables the sizing of the elements, which can vary continuously 
or can be taken from a list of available cross-sectional dimensions 
(or profiles). The second is the geometric optimization, considering 
the nodal coordinates as variables. Finally, the number of elements 
characterizes the topology optimization. In general, minimization 
of cost or weight is the objectives to be achieved, and the 
constraints are related to design codes and requirements. Probably 
the first computer application of structural optimization was a 
study developed by Schmit in 1960 related to minimum weight of 
a three-node plane truss. From then, a big diversity of applications 
has been studied, such as trusses, grillages, beams, frames, building 
floors, bridges, transmission towers and guyed masts. Some of 
these recent applications are presented in the sequence. Jalili & 
Hosseinzadeh [107] used Culture Algorithm to obtain minimum 
weight of trusses under stress and deflection constraints. Cross 
sectional area of each member was taken as the design variables. 
In order to test the performance of the method, four trusses 
were analyzed. The obtained results showed the efficiency of the 
method in finding the optimal design, obtaining. When compared 
to other classical methods, Culture Algorithm conducted to lighter 
structural weights with less structural analyses. Cicconi et al. [108] 
studied a methodology to reduce the weight and the cost of big 
steel structures during the early design phase. A platform-tool was 
developed to support the automatic optimization of steel frames 
using genetic algorithms and SAP2000 software. A test case chosen 
was an oil & gas module of an existing onshore power plant. Two 
different studies were proposed: the first were focused on weight 
minimization and regarded only to static loading, while the second 
considered three loading cases (static, load transport and sea 
transport). Using the proposed optimization method, the mass was 
reduced between 5% and 15%. Medeiros & Kripka [109] applied 
optimization to minimize the cost of reinforced concrete beams 
in order to propose pre-sizing parameters. The cross-sectional 
height of each group of beams was taken as design variables. 
The constraints were related to flexural, shearing, torsion, web 
reinforcements and serviceability limit states. An optimization 
software was developed by the association of grillage analysis 
and simulated annealing optimization method. The influence of 
relative cost of steel, concrete and formwork on total cost was also 
investigated. According to authors, simulated annealing heuristic 
was efficient in minimizing structure costs, and the software can be 
an important tool for the pre-sizing of building floor grids and also 
for individual beams. Kaveh & Talatahari [110] combined a variant 
of Particle Swarm with Ant Colony and Harmony Search methods 
into a new method named discrete heuristic particle swarm ant 
colony optimization (DHPSACO). This method was then employed 
to discrete optimization of trusses. Four structures are tested to in 
order to verify the efficiency of the proposed method. According to 
authors, better solutions were obtained compared to other classical 
algorithms. These solutions were obtained with less computational 
time and high speed of convergence.

Souza et al [111] optimized transmission line towers, being 
the structure divided in modules, which can assume different pre-
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established topologies. Simultaneously to topology, also shape and 
size were optimized. Two numerical examples were assessed, being 
the first a tower with eight different load cases and the second a 
self-supported tower subjected to a scenario of cable rupture and 
a wind load hypothesis. The obtained results indicated a reduction 
of up to 6.4% of the structural weight, when compared to a classical 
procedure of size optimization. Dede & Ayvaz [112] studied the 
optimization of plane and space trusses with a Teaching-learning-
based optimization (TLBO). Cross-sectional areas of bars and 
nodal coordinates were considered as the design variables. The 
method was applied to five structures. When compared to results 
obtained by other studies, it was concluded by the authors that 
the algorithm can be effectively used to design truss structures. 
Pholdee & Bureerat [113] compared the performance of 24 meta-
heuristic methods for truss optimization with dynamic constraints. 
Established methods were used to minimize mass of five different 
trusses. Based on a statistic analysis, the authors concluded that 
the best performance optimizers were evolution strategy with 
covariance matrix adaptation and differential evolution. Alapati 
[114] used genetic algorithm (GA) to weight minimization of 
plane trusses. The stresses and deflections were considered as 
the constraints of the problem. The method was applied to a 
classical benchmark structure (ten-bar truss). Some conclusions 
regarding GA parameters were presented. Chowdhury et al. [115] 
modeled plain concrete and steel fiber reinforced concrete (SFRC) 
cylinder specimens numerically, with experimental validation. The 
experimental study evaluated the increase in capacity of cylinders 
of stone and brick concrete and SFRC. The numerical study aimed 
to optimize the main controlling parameters to model concrete and 
SFRC in finite element platform. The final results presented a good 
correlation among numerical and experimental results. Farshchin 
et al. [116] introduced a multi-class teaching–learning-based 
optimization technique (MC-TLBO) to structures optimization with 
frequency constraints. The algorithm was tested with several truss 
structures, and the results were compared to those obtained with 
a modified TLBO algorithm and with other methods. The results 
indicated that the method can lead to low cost designs. In addition, 
a statistic analysis indicated that MC-TLBO was more robust 
and efficient than other studied techniques. Talaslioglu [117] 
minimized weight and joint displacements of grid structures, being 
the constraints related to serviceability and ultimate strength. 
Four Multiobjective optimization algorithms were applied to three 
examples and compared using different combinations of optimizer 
related parameters. To the examples analyzed, Adapting Scatter 
Search showed the best performance. 

Belevicius et al [118] presented a technique for simultaneous 
shape, sizing and topology optimization of tall guyed masts. The 
mast structure was optimized for self-weight and wind loading, 
considering strength, stability and slenderness constraints. The 
nonlinear behavior of the guyed mast is simplified idealizing the 
nonlinear guys as approximate boundary conditions for the mast. 
The genetic algorithm with preprocessor for genome repair was 
used as the primary optimization engine. After the best solution 
from the set of EA solutions is selected, the pattern search algorithm 

was employed to explore the neighborhood of the solution in 
depth. Using the proposed technique, a typical 96 m steel guyed 
mast carrying a standard antenna cluster was optimized. The 
optimization of the mast with different sets of design parameters 
showed that the most relevant schemes of the mast have three to 
five guys’ clusters, with the optimal scheme being the mast with 
five guys’ clusters. Poitras et al. [119] adopted Particle swarm 
optimization (PSO) for the minimum mass or cost design of 
composite and non-composite steel floor systems. The design 
variables were the size of girders and secondary beams, as well as 
the stud spacing and the concrete thickness. The performance of 
the algorithm was tested for three floor configurations. According 
to authors, PSO algorithm achieved the optimal results to all 
examples. Dede [120] used Teaching–Learning-Based Optimization 
algorithm (TLBO) for the minimum weight design of grillage 
systems. The design variables were the cross-sectional areas of 
W-shapes, considered as discrete variables. Several structures were 
optimized aiming to investigate the efficiency of the algorithm. 
The results were compared with those obtained from previous 
studies. According to the results, TLBO algorithm outperformed 
the other algorithms. Kaveh & Bakhshpoori [121] presented the 
application of the Cuckoo Search (CS) to weight minimization of 
truss structures, considering both discrete and continuous design 
variables. In order to investigate the performance of the algorithm, 
three examples were presented, consisting of two space trusses 
and a dome-shaped truss. The results, presented in terms of results 
and number of function evaluations, indicated the robustness of 
the algorithm. Hasançebi et al [122] compared the performance 
of seven techniques in optimum design of truss structures. First, 
a verification of the algorithms used to implement the techniques 
was carried out using a benchmark problem. Next, the techniques 
were compared in terms of solution accuracies, convergence rates 
and reliabilities using four real size design examples formulated 
according to the design limitations imposed by ASD-AISC. To the 
examples considered, the results revealed that simulated annealing 
and evolution strategies presented the best performance. Sharafi 
et al. [123] presented a procedure for the shape and sizing 
optimization of open and closed thin-walled steel sections using 
the graph theory. A multi-objective optimization problem aimed to 
minimize the mass and maximize the strength of the section. The 
problems were solved by the usage of multi-colony ant algorithms, 
and the Pareto-optimal set was obtained. The results showed the 
applicability of the proposed procedure to shape optimizations of 
steel sections and sizing optimization roof sheeting.

Fabeane et al. [124] studied the optimization of composite 
bridges, aiming to reduce the cost of bridge cross section by 
varying the dimensions of the steel girders. The specification used 
in the analysis and design of the girders was the AASHTO, and the 
cases studied were simple span bridges with different spans and 
a variable number of steel girders. The results obtained enabled 
the identification of parameters to optimize design of composite 
bridges, showing that the use of criteria based on optimization 
techniques can lead to a significant reduction in the cost of the 
structures. Majumdar et al [125] presented a method to detect and 
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quantify structural damages from changes in modal parameters. 
Computer codes were developed and applied to beam and frame 
type structural systems. The structures were modeled with Euler-
Bernoulli beam element and damage is represented in terms of 
SRF. The modal parameters were calculated numerically from 
eigen value analysis. An extended form of ant colony optimization 
technique called continuous ant colony optimization was used. The 
effectiveness of the algorithm was studied with cantilever beam 
model, a 3-bay 4-storey plane frame model, and a five-storey space 
frame model. The proposed damage detection method was found to 
be equally successful regardless of the damage location and extent 
of damage. Torres-Machi et al. [126] optimized the design of high-
performance concrete for reinforced concrete beams, using three 
hybrid optimization strategies: Variable Neighborhood Descent 
(VND), Reduced Neighborhood Search (RNS) and Basic Variable 
Neighborhood Search (BVNS). The algorithms were applied to 
minimum cost and minimum embedded carbon dioxide emissions. 
The results indicated that the objective function, both to economic 
and ecological beams, increases parabolically with the span length.

Optimization in mechanical engineering problems

Optimization techniques are used in Mechanical Engineering in 
all of its important sub-fields, i.e. design of mechanical elements and 
systems, design of thermal devices and systems, and manufacturing 
process and systems. The researchers presented several type of 
mechanical optimization problems. Some of these problems are; 
optimizing the material costs and electric-thermal performance, 
optimal design of selected thermal, optimization aspects of four 
modern machining processes, optimization of the laminated 
composite plates, optimization for composite plates, stacking 
sequence optimization, etc. Rao & More [127] explored the use of 
an improved Jaya algorithm called self-adaptive Jaya algorithm for 
optimal design of selected thermal devices viz; heat pipe, cooling 
tower, honeycomb heat sink and thermo-acoustic prime mover. 
Four different optimization case studies of the selected thermal 
devices were presented. The researchers had attempted the same 
design problems in the past using niched pareto genetic algorithm 
(NPGA), response surface method (RSM), leap-frog optimization 
program with constraints (LFOPC) algorithm, teaching-learning 
based optimization (TLBO) algorithm, grenade explosion method 
(GEM) and multi-objective genetic algorithm (MOGA). The results 
achieved by using self-adaptive Jaya algorithm were compared 
with those achieved by using the NPGA, RSM, LFOPC, TLBO, GEM 
and MOGA algorithms. The self-adaptive Jaya algorithm was proved 
superior as compared to the other optimization methods in terms 
of the results, computational effort and function evaluations. Ocłoń 
et al. [128] presented a modified Jaya algorithm for optimizing the 
material costs and electric-thermal performance of an Underground 
Power Cable System (UPCS). A High Voltage (HV) underground 
cable line with three 400 kV AC cables arranged in flat formation in 
an exemplary case study was considered. The performance of the 
modified Jaya algorithm was compared with classical Jaya and PSO 
algorithms. The modified Jaya algorithm was reported to give lower 
values of the cost function.

Rao et al. [129] described multi-objective optimization aspects 
of four modern machining processes namely wire-electro discharge 
machining process, laser cutting process, electrochemical 
machining process and focused ion beam micro-milling process. 
In order to handle multiple objectives simultaneously a new 
posteriori multi-objective optimization algorithm named as 
multi-objective Jaya (MO-Jaya) algorithm was proposed which 
could provide multiple optimal solutions in a single simulation 
run. The results of MO-Jaya algorithm were compared with the 
results of GA, NSGA, NSGA-II, BBO, NSTLBO, PSO, SQP and Monte 
Carlo simulations. The results had shown the better performance 
of the MO-Jaya algorithm. Apalak et. al [130] presented a study 
related to the optimization of the laminated composite plates. They 
aimed to find maximum basic frequency for composite plates using 
genetic algorithm (GA). The finite element technique is used in the 
calculation of the fundamental frequency of the composite plates. 
The toolbox of the MATLAB programming was preferred by the 
authors to find maximum first frequency value of the laminated 
composite plates. The authors used the artificial neural network 
to reduce the time consuming which is necessary to handle finite 
element technique to calculate frequency of the model. That is, the 
neural network model is used as an alternative numerical analysis 
for calculation of the frequency. Koide et al. [131] optimized the 
laminated composite plate using ant colony algorithm (ACO). To 
demonstrate the efficiency of their program, the authors tested the 
developed algorithm on the four numerical examples. The design 
variables used in this study are the orientation of the fiber and he 
material. Cost of the material is selected as an objective function 
for the developed algorithm. Maximum weight of the structure 
and the buckling are the limitations of the optimization problem. 
The developed program based on the ACO showed an excellent 
performance. In the numerical example, the authors taken into 
account different type of mechanical problem. As many researchers, 
the authors used the MATLAB to develop their algorithm. Honda et 
al. [132] performed a discrete optimization for composite plates. 
The natural frequencies of the composite layers are the objective 
function of the optimization algorithm. They defined the best 
solution of the lamination specifications using gradient technique. 
In contrast to previous researchers using the genetic algorithm, the 
authors of this paper developed a simple process. By using different 
boundary in numerical examples, the correct optimal solutions can 
be obtained with this developed algorithm. Topal et al. [133] made 
a study on the stacking sequence optimization by using Teaching–
Learning-Based Optimization algorithm. The authors also used 
the other optimization algorithms technique named Artifical Bee 
Colony (ABC). In the optimization process the maximum number 
of iteration and the population size are 100 and 30, respectively. 
The fiber angle of each layer are the design variables of the area 
bales of the proposed algorithms. The fundamental frequency of 
the laminated layer is the objective function of the program. The 
constraints are not taken into account, that is, this problem can be 
categorized as an unconstrained optimization problem.

 Thamaraikannanand & Thirunavukkarasu [134] used the 
Teaching-Learning Based Optimization Algorithm (TLBO) for the 
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mechanical optimization problems. They developed a new operator 
named “Differential Operator” to TLBO by the hope to find better 
solution than the traditional TLBO algorithm. They also made 
a statistical study using the maximum, minimum, average and 
mean value of the objective function to show the performance of 
the developed program. The objective functions of this developed 
program are minimum weight and the minimum volume for the 
related mechanical problem. Yusup et al. [140] addressed that cutting 
speed, depth of cut and radial rake angle are commonly adopted 
parameters as design variables in the optimization of machining 
process. They also stated that to solve this kind of optimization 
problem generally metaheuristic algorithms were utilized. They 
reviewed the application of Particle Swarm Optimization (PSO) 
on those problems related to the machining process, which were 
studied by the researchers from 2007 to 2011. Based on the 
review process, they argued that the optimization of machining 
process handled with PSO is usually associated with the multi-pass 
turning. On the other hand, they also expressed that the machining 
performance mostly adopted are the production costs. Apalak et al. 
[141] applied Artificial Bee Colony (ABC) algorithm as an optimizer 
in layer optimization of symmetrical laminated composite plates. 
The problem was examined under different boundary condition 
schemes, and the main purpose of this optimization process was 
to maximize the first natural frequency of the corresponding plates 
system. To fulfill this task the finite element method was employed 
to identify the first natural frequency of the laminated composite 
plates under varying stacking sequences. For the investigated 
problem, the results obtained by using ABC algorithm for the optimal 
stacking sequences indicated that those were also meaningful when 
comparing with the results obtained by implementing the genetic 
algorithm integrated with the finite element method. Karaya 
& Soykasap [142] highlighted some remarkable features of the 
composites and why the users utilize these materials in the design 
of distinct structures such as aircraft, spacecraft, marine vessels 
etc. They proposed a hybridization scheme to enhance the material 
properties of the composites. Two hybridization scheme, carbon/
epoxy and glass/epoxy hybrid plies, were exerted. The effect of these 
hybrid laminate on the cost of composite plates were investigated 
by employing two different metaheuristic optimization algorithms, 
GA and SA. Thanks to numerical investigations, they stated that 
both optimization algorithms implemented were capable of finding 
the optimal stacking sequences of hybrid composite plates subject 
to maximization of natural frequencies and buckling load. However, 
it was also outlined that the overall performance of GA was better 
than SA. 

Sadr & Bargh [143] proposed two enhancements to improve 
the optimization process conducted to maximize the fundamental 
frequency of the symmetrically laminated plates. First one was 
made on the optimization algorithm, GA, through the elitist strategy 
while the latter was for the calculation of the objective function 
taken as the natural frequencies with the help of finite strip method. 
Taking the number of layers, the fiber orientation angles, edge 
conditions and plate length/width ratios as the design variables, 
the proposed optimization model was performed for laminated 

composite plates which have 0.01 length/width ratio and AS/3501 
graphite/epoxy material. Consequently, based on the numerical 
experiments, they argued that the proposed model was able to 
produce better the results than that reported previously. Le-Anh 
et al. [144] performed two different optimization processes for the 
static and dynamic problems of folded laminated composite plates. 
In the former process, the aim was to decrease the strain energy 
while in the later one; the maximization of fundamental frequency 
was taken into account as objective. In both processes, discrete 
integer values varying from -90 to 90 were adopted as design 
variables for the fiber orientations. Search processes of the optimal 
solutions were utilized by the adjusted Differential Evolution 
(aDE) algorithm. It was a variant of classic DE strengthening with 
a new mutation operator and ability of handling discrete variables. 
Besides, corresponding processes also included a newly developed 
plate element called smoothed triangular plate element in order 
to simulate effectively the static and free vibration behaviors of 
folded laminated composite plates. The numerical results obtained 
by employing the proposed model demonstrated that aDE was 
capable of improving the rigidity of composite plate by determining 
the optimal number of layers and arrangement of them properly. 
Vosoughi & Nikoo [145] developed a Multiobjective optimization 
model based on the integration of differential quadrature method 
(DQM), NSGA-II, and Young bargaining model for simultaneous 
optimization of laminated composite plates. Both the fundamental 
frequency and thermal buckling temperature for those were tried 
to maximize in terms of the fiber’s orientations. Using the proposed 
hybrid method, optimal fibers orientations for laminated composite 
plates were determined under the varying conditions including 
boundary, thickness-to-length and aspect ratios. 

Nourbakhsh et al. [146] studied multiobjective optimization 
of centrifugal pumps, which are widely used in process industries 
to lift fluid from one level to another. In the design of this class of 
pumps, it was tried to find a solution which satisfies two conflicting 
objectives; maximization of efficiency (η) and minimization of the 
required net positive suction head (NPSHr) in a set of centrifugal 
pumps. They modelled this design problem using group method 
of data handling (GMDH) type neural networks to map inputs 
and outputs. They also used a multi-objective particle swarm 
optimization method to obtain the optimal solutions for the 
optimization of centrifugal pumps considering two conflicting 
objectives, η and NPSHr. They concluded that thanks to Pareto-
based multi-objective optimization it could be outlined some useful 
optimal design alternatives to be able to improve the performance of 
centrifugal pumps. Rao & Waghmare [147] optimized the structure 
of a robot gripper finding the dimensions of elements of the gripper 
by satisfying the geometric and force constraints. To fulfill this 
purpose, five different objectives were considered to determine 
the optimal geometrical properties of robot gripper. To satisfy 
balances between these conflicted objective seven design variables 
associated with the geometrical dimension of gripper were taken. 
Teaching learning-based optimization (TLBO) algorithm based 
multiobjective model was developed to search the optimal solution. 
The numerical results obtained from the optimization process 
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indicated that the performance of TLBO algorithm for the multi-
objective design optimization of robot grippers was able to compete 
with those obtained by employing different multi-objective models 
like MOGA, NSGA-II, and MODE. 

Conclusion
The potential and effectiveness of different advanced 

optimization algorithms are presented in this paper by reporting 
the works of various researchers in different divisions of civil 
engineering such as structural engineering, construction 
management, mechanics, transportation and geotechnical 
engineering during the last two decades. Approximately 20 
optimization algorithms are introduced. The applications of 
advanced optimization algorithms in mechanical engineering are 
also presented. It is observed that different optimization algorithms 
are used for different applications, but one need not claim any 
particular optimization algorithm as the “best” algorithm among 
all the optimization algorithms available in the literature. In fact, 
there may not be any such ‘best’ algorithm existing! A particular 
algorithm may not be the “best” for all types of optimization 
problems. If any algorithm is found having certain limitations, 
then the efforts of the researchers should be to find the ways to 
overcome the limitations and to further strengthen the algorithm. 
Researchers are encouraged to make improvements to the existing 
optimization algorithms and/or to develop new optimization 
algorithms. Due to the length limitation of the text, other important 
works were not included in this selection. Anyway, it is remarkable 
the growing application of optimization to the resolution of real 
problems. It is concluded that this review paper will be helpful for 
the researchers related to the optimization technique.
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