UPV



riesgos


Publicada By  Víctor Yepes Piqueras - Docencia, estructuras, hormigón, medios auxiliares, procedimientos de construcción, riesgos, seguridad    

Figura 1. https://pixabay.com/es/sitio-las-obras-de-construcci%C3%B3n-592459/
CC0 Creative Commons

Las cimbras, según define la Norma Técnica de Prevención NTP-1069, son estructuras provisionales de apuntalamiento en altura, que sirven para la sustentación de las distintas plataformas, mesas o planchas de trabajo que conforman el encofrado, cumplen, según los casos, funciones de servicio, carga y protección. Las cimbras también se pueden utilizar como apeo para cualquier carga, por ejemplo: estructuras como apeo en fase de montaje, demoliciones, refuerzo de estructuras existentes frente cargas puntuales, etc.

Las torres de cimbra de componentes prefabricados son los más empleados, clasificándose según su método de rigidización, pues se puede triangular completamente en todos los planos verticales (Figura 1) o no.

Las cimbras permiten su funcionamiento como estructuras capaces de soportar cargas de diferente naturaleza. Los principales componentes y elementos principales son los siguientes:

  • Base regulable. Es una placa base metálica, dispuesta en la parte inferior de la torre de cimbra, que permite el apoyo sobre el terreno o cimentación durante el montaje y que, gracias a un husillo, se regula en altura para absorber de las irregularidades en la superficie de apoyo de la torre.
  • Cabezal en U. Se trata de una pieza metálica en U, situada en la parte superior de la torre, encima de los últimos montantes verticales, que permite el apoyo de las vigas primarias que soportan el encofrado.
  • Husillo. Consiste en un dispositivo metálico roscado, utilizado como componente principal en las bases regulables y en los cabezales en U. Es capaz de regular la altura de la cimbra y de liberarla de carga, para su descimbrado, a través de su descenso.
  • Montante. Es un elemento metálico vertical de la cimbra que transmite las cargas soportadas en la parte superior de la cimbra hasta el terreno o cimentación sobre la que se sustenta la torre de cimbra. Su montaje, arriostrado con el resto de los montantes verticales de la torre, configura lo que se denomina “módulos de la cimbra”.
  • Travesaño. Se trata de un elemento metálico horizontal de la cimbra, que conecta horizontalmente dos montantes verticales adyacentes, aumentado la rigidez y la resistencia vertical y estabilidad de la torre de cimbra.
  • Diagonal. Es un elemento metálico dispuesto en la torre de cimbra, que permite conectar de manera diagonal dos montantes verticales adyacentes, aumentando la rigidez y proporcionando una mayor resistencia vertical y lateral de esta estructura auxiliar de carácter temporal.Tanto los travesaños horizontales como las diagonales, son rigidizadores que ajustan, aseguran y estabilizan la torre de cimbra desde su arranque. El número de arriostramientos varía en función de la altura total de la torre, gracias a lo cual se evita el vuelco o desplazamiento de la torre de cimbra ante posibles esfuerzos horizontales, garantizando la estabilidad estructural y la capacidad de carga de la torre de cimbra.
  • Abrazadera/acoplamiento: Se trata de un dispositivo utilizado para conectar dos tubos diferentes. Existen dos tipos principales: acoplamiento de cuña (donde la fuerza de sujeción se obtiene al ajustar una mordaza sobre el tubo mediante el golpeo de una cuña) y el acoplamiento roscado (donde la fuerza de sujeción se obtiene al ajustar una mordaza alrededor del tubo por medio de una tuerca y un perno).
  • Contrapeso. Consiste en material sólido opcional que puede disponer la estructura que conforma la cimbra para proporcionar una mayor estabilidad frente al vuelco por la acción de su peso muerto.
  • Cimiento. Subestructura opcional, en terrenos de poca capacidad portante y de resistencia a compresión, que tiene el objetivo de transmitir la carga de las torres de cimbra a éste en lugar de realizar un apoyo directo sobre el terreno. Como cimentación de las torres de carga suelen disponerse zapatas formadas por durmientes de madera o de hormigón.

 

 

En la Figura 2 siguiente se puede ver un esquema simplificado de los componentes de una cimbra, en este caso, de una cimbra de gran carga MK-360 de la empresa ULMA.

Figura 2. https://www.ulmaconstruction.com/es/encofrados/puntales-cimbras/cimbras-de-gran-carga/cimbra-gran-carga-mk

 

A continuación os dejo una animación del proceso de montaje Cimbra PAL Mecanotubo para aclarar las ideas.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

20 abril, 2018
 

Publicada By  Víctor Yepes Piqueras - algoritmo, carreteras, ciclo de vida, competitividad, economía, empresas constructoras, estructuras, gestión, hormigón, ingeniería civil, innovación, investigación, modelo matemático, optimización, Planificación, prefabricación, procedimientos de construcción, proyectos, Puentes, riesgos, seguridad, sostenibilidad, toma de decisiones, universidad    

Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. (más…)

Publicada By  Víctor Yepes Piqueras - ingeniería civil, investigación, riesgos, sostenibilidad, toma de decisiones    

Terremoto en Chile. Wikipedia

La evaluación de la sostenibilidad social de los proyectos no es un tema sencillo ni inmediato. Si bien los impactos medioambientales se han estudiado en el ámbito científico con cierta profundidad, los impactos sociales de las infraestructuras se han investigado mucho menos. Es más, en numerosas ocasiones dichos impactos se han minusvalorado. Pues bien, nos acaban de publicar un artículo en la revista Environmental Impact Assessment Review (revista indexada en el JCR, primer cuartil de impacto) en el cual proponemos una metodología que permite afrontar este reto.

Elsevier permite descargar de forma gratuita este artículo hasta el 14 de junio de 2017 accediendo al siguiente enlace: https://authors.elsevier.com/a/1UxW7iZ5spJDe

Referencia:

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. https://doi.org/10.1016/j.eiar.2017.02.004

Highlights:

  • Method to select suitable infrastructure projects from the social sustainability point of view
  • Emphasizes social interactions of the infrastructure in the short and long term
  • Distinguishes the social sustainability of infrastructure projects in different locations
  • Efficiency of a social contribution in terms of early social benefits and a long-term distribution
  • Supports early decision-making of public agencies regarding infrastructure projects

 

Abstract:

Nowadays, sustainability assessments tend to focus on the biophysical and economic considerations of the built environment. Social facets are generally underestimated when investment in infrastructure projects is appraised. This paper proposes a method to estimate the contribution of infrastructure projects to social sustainability. This method takes into account the interactions of an infrastructure with its environment in terms of the potential for short and long-term social improvement. The method is structured in five stages: (1) social improvement criteria and goals to be taken into account are identified and weighed; (2) an exploratory study is conducted to determine transfer functions; (3) each criterion is homogenized through value functions; (4) the short and long-term social improvement indices are established; and finally, (5) social improvement indices are contrasted to identify the socially selected alternatives and to assign an order of priority. The method was implemented in six alternatives for road infrastructure improvement. The results of the analysis show that the method can distinguish the contribution to social sustainability of different infrastructure projects and location contexts, according to early benefits and potential long-term equitable improvement. This method can be applied prior to the implementation of a project and can complement environmental and economic sustainability assessments.

Keywords:

  • Social contribution;
  • Social improvement;
  • Infrastructure;
  • Method;
  • Social sustainability

 

 

Publicada By  Víctor Yepes Piqueras - carreteras, estructuras, hormigón, innovación, investigación, riesgos, seguridad, sostenibilidad, toma de decisiones    

BCH001La sostenibilidad constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global debido a las emisiones de gases de efecto invernadero y las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar nuestra generación. La concentración de CO2, alcanzó un máximo sin precedentes en 2013, con el mayor incremento anual en 30 años (World Meteorological Organization, 2014), por lo que la economía baja en carbono se perfila como una línea estratégica de gran importancia. Las actividades humanas son las principales responsables de este problema, provocando un desarrollo alejado de satisfacer las necesidades de las generaciones presentes sin comprometer las necesidades de las generaciones futuras, que constituye el núcleo del paradigma de “desarrollo sostenible” (Brundtland, 1987).

La construcción juega un papel fundamental en el desarrollo de la sociedad. Influye fuertemente en la actividad económica, el crecimiento y en el empleo. Sin embargo, es una actividad que impacta significativamente en el medio ambiente (Marí, 2007), presenta efectos irreversibles y puede comprometer el presente y futuro de la sociedad. Este sector consume hasta un 60% de las materias primas extraídas (Vital Signs, 2005), generando su transformación sobre el 50% de todas las emisiones de CO2. En Europa, el 30% de los residuos proceden de la construcción y la demolición; consumiendo la industria y la construcción un 42% de la energía total de (Pacheco-Torgal y Jalali, 2011). Son datos que muestran la brecha de mejora posible en esta industria para acercarse a la sostenibilidad. No basta con construir de forma económica y eficiente, sino que debe ser socialmente aceptable, debe ahorrar recursos naturales no renovables y respetar el medio ambiente a largo plazo. Un paso en este sentido son herramientas como BREEAM, CASBEE, DGNB o LEED que certifican la sostenibilidad de las edificaciones usando parámetros objetivos. (más…)

12 julio, 2016
 

Publicada By  Víctor Yepes Piqueras - geotecnia, riesgos    

https://robertoaugustorivas.files.wordpress.com

Hoy, 3 de octubre de 2015, nos desayunamos con una catástrofe que, de forma sistemática sacude una y otra vez. Se trata de las decenas de muertos y cientos de desaparecidos del movimiento de ladera ocurrido en Guatemala. Es, por tanto, una oportunidad para difundir este tipo de fenómeno para ver si, de una vez por todas, se toman las medidas preventivas necesarias.

Un movimiento de ladera es un desplazamiento de una masa de rocas o tierras hacia el exterior de la misma y con un componente descendente inducido por la acción de la gravedad. Se trata de una importante amenaza para la población y sus bienes, muchas veces infravalorada. Así, en Estados Unidos se producen de 25 a 50 muertes al año, con pérdidas valoradas en unos 310 millones de dólares. . Los terribles terremotos producidos en Nepal nos ha recordado la tragedia que supone los corrimientos de tierras y las víctimas que conlleva. Este fenómeno debe tenerse en cuenta en la planificación territorial tanto urbanística como para la implantación de infraestructuras.

Existen muchas clasificaciones de los movimientos de ladera. Sin embargo, podemos distinguir algunos de ellos:

  • Caída o desprendimiento: caída libre de bloques, cantos, gravas, etc. La caída de material se produce fragmento a fragmento.
  • Vuelco: rotación hacia el exterior de una masa de roca, derrubios o suelo sobre un pivote o bisagra en la ladera.
  • Deslizamiento: movimiento del material a lo largo de una superficie de cizalla (corte) reconocible. Se clasifican a su vez en rotacionales o traslacionales.
  • Flujo: movimiento en el que las partículas individuales de material viajan separadas dentro de la masa que se mueve. Según los materiales pueden ser debris-flow, mud-flow y sand-flow.

HtnwEICxXduigPp63mWBUjl72eJkfbmt4t8yenImKBVvK0kTmF0xjctABnaLJIm9

 

Para disminuir las probabilidades de que este riesgo se materialice, es necesario llevar a cabo una serie de medidas preventivas basadas principalmente en la utilización de estructuras de ingeniería como protección. Existen dos clases:

  • Protección estructural activa: Dentro de la protección activa se encuentran las redes, los muros de contención, las mallas metálicas, los anclajes y cualquier protección que ejerza una acción sobre el elemento inestable para fijarlo.
  • Protección estructural pasiva: Engloba a las barreras dinámicas y a cualquier estructura que no evite que se desencadene el suceso pero si lo retenga antes de que llegue a cualquier población amenazada.

En el siguiente vídeo de la universidad de La Laguna, el profesor Abel López nos explica las amenazas geológicas y geomorfológicas que supone un movimiento de ladera.

En estos otros vídeos podemos ver algunos deslizamientos de ladera, algunos realmente espectaculares.

En este otro vídeo, vemos cómo el Gobierno de El Salvador comunica los riesgos a las personas este tipo de riesgo.

 

 

 

 

 

3 octubre, 2015
 

Publicada By  Víctor Yepes Piqueras - errores, geotecnia, hidráulica, historia, presas, riesgos    

El valle de Vajont tras el derrumbe del monte Toc que causó el desastre. Wikipedia

La presa de Vajont fue construida el año 1961 en los Pre-Alpes italianos a unos 100 kms al norte de Venecia, Italia. Era una de las presas más altas del mundo, con 262 m de altura, 27 m de grosor en la base y 3,4 m en la cima. Desde el principio, los técnicos ya detectaron problemas por corrimientos de tierras, por lo que recomendaban no llenar el embalse por encima de cierto nivel de agua. A las 22.39 h del día 9 de octubre de 1963, la combinación del tercer rellenado del depósito produjo un gigantesco deslizamiento de unos 260 millones de m3 de tierra y roca, que cayeron en el embalse, prácticamente lleno, a unos 110 km/h. El agua desplazada resultante produjo que 50 millones de m3 de agua sobrepasasen la presa en una ola de 90 m de altura. A pesar de eso, la estructura de la presa no recibió daños importantes. La tragedia podría haber sido aún mayor si la presa se hubiera derrumbado, vertiendo otros 50 millones de m3 que a pesar de todo permanecieron embalsados. El formidable tsunami consecuencia del deslizamiento destruyó totalmente el pueblo de Longarone y las pequeñas villas de Pirago, Rivalta, Villanova y Faè. Varios pueblos del territorio de Erto y Casso y el pueblo de Codissago, cerca de Castellavazzo, sufrieron daños de importancia. Unas 2.000 personas fallecieron. Los destrozos fueron producidos exclusivamente por el desplazamiento de aire al explotar la ola en los pueblos colindantes.

Animación del deslizamiento. Fuente: http://ireneu.blogspot.com.es

¿Cómo pudo suceder un desastre de tales proporciones? ¿Se pudo evitar? Es mucha la información en distintas webs sobre la tragedia de Vajont. Nos pone en guardia sobre los límites de la técnica y del sentido común. Desgraciadamente, se ha convertido en un ejemplo en el que el hombre decidió retar a la naturaleza y esta le avisó de lo que podía suceder, pero cuando los responsables decidieron mirar hacia otro lado, el desastre llegó con sus mayores consecuencias. Este es un buen ejemplo de estudio de caso, tanto desde el punto de vista técnico como ético.

En el siguiente enlace podéis descargaros un artículo del año 1964 de José Mª Valdés sobre algunas meditaciones de esta catástrofe. Se trata de una conferencia pronunciada el 24 de abril de ese año en el Centro de Estudios Hidrográficos de la Dirección General de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/1964/1964_tomoI_2991_01.pdf

En un documental emitido por el canal Historia, una de las víctimas relata que un ingeniero dijo a su abuela: “Recuerde que la presa no se caerá porque está muy bien hecha, pero la montaña cederá, y acabarán atrapados como ratas”. A continuación os dejo varios de estos vídeos al respecto para la reflexión.

14 agosto, 2015
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - proyectos, riesgos    

Para realizar un análisis cualitativos de los riesgos de un proyecto, se pueden seguir las recomendaciones del Project Management Institute (PMI). Se trata de priorizar los riesgos identificados evaluando la probabilidad de ocurrencia y su impacto en los objetivos principales del proyecto, de forma que los esfuerzos de la gestión de los riesgos se centren en aquellos que presenten mayor prioridad. El análisis suele realizarse en función de los criterios previos, donde se establecen los niveles de tolerancia al riesgo, la categorización de los riesgos, sus probabilidades e impactos, etc.

El análisis cualitativos de los riesgos no tienen en cuenta las interacciones entre distintos riesgos, sino que se realiza atendiendo a cada riesgo identificado. Para ello se evalúa la probabilidad de que un riesgo ocurra (% de ocurrencia) y el efecto que tienen sobre los objetivos básicos del proyecto (escala numérica). Con ello se puede construir una matriz de Probabilidad*Impacto que ayuda a priorizar los riesgos del proyecto.

 

Para entender mejor los conceptos relacionados con el análisis cualitativo de los riesgos de un proyecto, os dejo el siguiente Polimedia del profesor Alberto Palomares, de la Universitat Politècnica de València.

 

1 abril, 2015
 
|   Etiquetas: ,  ,  ,  |  

Universidad Politécnica de Valencia