Patrimonio y paisaje cultural de los puertos deportivos

Os presento un trabajo donde se explora el patrimonio cultural de los puertos deportivos y se profundiza en la relación entre su patrimonio y el paisaje cultural. El paisaje y el patrimonio son elementos relevantes en estas áreas y podrían ser ventajas competitivas en la gestión de estas instalaciones marítimas. Como instalaciones para actividades marítimas de ocio, hay muchas posibilidades de identificar su patrimonio cultural y su paisaje cultural. A través del análisis de estos conceptos se desarrolla en este estudio la relación propuesta entre el binomio patrimonio/paisaje cultural y los puertos deportivos. De esta forma, se identifican algunos elementos a considerar dentro del patrimonio cultural de los puertos deportivos y su paisaje cultural, no solo relacionados con la conservación y la reutilización de elementos del pasado. También se proponen tres modelos de relación, que van desde la integración, hasta el fortalecimiento y la evolución.

Este trabajo se presentó en el 8th International Symposium “Monitoring of Mediterranean Coastal Areas. Problems and Measurement Techniques“, y ha sido editado como libro (Bonora, L.; Carboni, D.; De Vincenzi, M., edts.) por la Universidad de Florencia. Os dejo a continuación la referencia.

Referencia:

MARÍN, R.; YEPES, V.; GRINDLAY, A. (2020). Discovering the marina’s cultural heritage and cultural landscape. 8th International Symposium Monitoring of Mediterranean Coastal Areas. Problems and Measurements Techniques, pp. 95-104. Firenze University Press. e-ISBN: 978-88-5518-147-1  DOI: 10.36253/978-88-5518-147-1.11

Descargar (PDF, 433KB)

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

El concepto de paisaje dentro de los puertos deportivos: Bases para la consideración en la gestión

Acaban de publicarnos un artículo en la revista Ocean and Coastal Management (de Elsevier, indexada en el JCR), un artículo que trata sobre cómo influye el concepto de paisaje dentro de los puertos deportivos en la gestión. Se trata de un artículo de una línea de investigación que trata sobre el paisaje en la planificación y gestión de los puertos deportivos, y del cual ya escribimos un artículo para el caso de Andalucía. Este artículo lo podéis descargar gratuitamente hasta el 19 de julio de 2019 directamente en la siguiente dirección: https://authors.elsevier.com/c/1Z8es3RKK-g72d

Abstract

The landscape is a complex concept that deals with the relationship between people and their environment. The concept therefore encompasses many perspectives, and each area of knowledge approaches it differently. Ports are unique elements within the landscape, with great attractiveness since ancient times, and its position on the coastline represents a superb base to observe their surroundings. Moreover, marinas are ports that specialize in pleasure crafts with a great potential for leisure. In this sense, this study introduces the landscape in the marinas —grounding its particularities of function and scale with respect to other port facilities— through a three-part Delphi survey that was conducted on a sample made up of an expert panel (n = 23) in landscape and marinas from academia, consulting and management practice from Spain. Based on the concept of landscape, and after the analysis of existing literature and documents, the current research examines expert opinion on the various elements that embrace the landscape in marinas. Through a combination of open-ended responses, and Likert-type questions, the experts’ panel attempts to identify the elements that should be considered in each of the approaching stages, and its respective rates. This set of criteria constitutes a starting point for a better understanding of the landscape in these types of maritime facilities. Also, it provides the basis to properly incorporate the landscape into the planning and management of marinas.

Highlights

  • The landscape in the marinas has been traditionally treated in a confusing and intuitive way.
  • A list with the elements that make up the landscape within marinas is presented.
  • Assessment of the criteria is obtained through a Delphi method.
  • The results provide the basis for the integration of landscape in port management processes.

Keywords

Landscape
Marinas
Delphi survey
Port management

Reference:

MARTÍN, R.; YEPES, V. (2019). The concept of landscape within marinas: Basis for consideration in the management.Ocean & Coastal Management, 179:104815. DOI:10.1016/j.ocecoaman.2019.104815

 

 

 

Una breve introducción a la dinámica litoral de nuestras costas

Son muchas las actividades que está desarrollando la Escuela de Caminos, Canales y Puertos de la Universitat Politècnica de València con motivo de su 50 aniversario. Una de ellas es la elaboración de una serie de vídeos divulgativos de la Ingeniería Civil y su papel en la sociedad.

Para empezar tenemos este vídeo producido por  y editado por Diodo Media. En él se describe la dinámica litoral de nuestras costas. Esperamos que lo disfrutéis.

Instalación de un cubípodo de 45 t en la Escuela de Ingenieros de Caminos de Valencia

Esta mañana, a las 7 de la mañana, empezaron las maniobras para la instalación de un cubípodo de 45 toneladas en un jardín anexo a la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Se trata de una de las acciones encaminadas a conmemorar el 50 aniversario de nuestra Escuela. Por cierto, esto nos hermana con la Escuela de Ingenieros de Caminos de A Coruña, que también tiene uno en sus jardines (ver la última fotografía).

Para ello se ha utilizado una grúa de 200 t. Este cubípodo se ha utilizado, entre otros sitios, en el contradique de Langosteira.

Felicito desde esta página al director de nuestra Escuela, Eugenio Pellicer y a su equipo por la iniciativa. Os dejo algunas fotografías y vídeo sobre esta instalación.

 

 

Cubípodo instalado en la Escuela de Ingenieros de Caminos de A Coruña. Imagen: V. Yepes

Os dejo algún vídeo explicativo de este cubípodo, desarrollado por profesores de nuestra Escuela e instalado por SATO.

 

Curso de Planificación y Gestión de Playas. Universidad de Oporto

La Faculdade de Engenharia da Universidade do Porto (Portugal), a través del Instituto de Hidráulica y Recursos Hídricos (FEUP), junto con la Universitat Politècnica de València, han organizado un Curso de Planificación y Gestión de Playas, que tendrá lugar en Oporto entre los días 25 y 29 de junio de 2018. Esta es la segunda vez que se programa este curso, de 25 horas, que en su primera edición en 2010, tuvo un éxito muy notable en cuanto a participación e inscripción. El curso se desarrollará en español, contando con la participación de tres catedráticos de la UPV: Víctor Yepes, Vicent Esteban y José Serra.

Si estás interesado, las inscripciones las puedes realizar a través del siguiente enlace: https://cursopraiasihrh.weebly.com/inscriccedilotildees.html. Asimismo, el contacto con los organizadores del Curso lo podéis obtener en la siguiente dirección: https://cursopraiasihrh.weebly.com/contactos.html

El programa que se desarrollará será el siguiente:

Bloque 1: Planificación. 5 horas. Víctor Yepes.

  1. El turismo litoral, evolución y tendencias.
  2. La importancia económica de las playas turísticas.
  3. La ordenación de usos y zonificación de las playas.
  4. Capacidad de carga turística de una playa.
  5. La gestión integrada del litoral.

Bloque 2: Infraestructuras. 5 horas. Víctor Yepes.

  1. Infraestructuras lúdicas y deportivas.
  2. Infraestructuras higiénicas y estrategias de ahorro hídrico.
  3. Diseño y gestión de playas accesibles.
  4. Servicios de información, salvamento y primeros auxilios.
  5. Equipos de limpieza de playas.

Bloque 3: Sistemas de gestión de calidad y medio ambiente. 5 horas. Víctor Yepes.

  1. La innovación y gestión de la calidad y del medio ambiente en las playas.
  2. Gestión ambiental de recursos turísticos litorales. Banderas azules.
  3. La aplicación de la norma ISO 9001 e ISO 14001 a las playas.
  4. El sistema de calidad turístico español: La “Q” del ICTE.
  5. La incidencia de la gestión turística en las playas encajadas.

Bloque 4: Procesos y riesgos litorales en playas turísticas. 5 horas. José C. Serra.

  1. El medio costero-litoral: Dinámica, procesos y formas.
  2. Estabilidad, evolución, prognosis y control y seguimiento de playas.
  3. Riesgos en el litoral.
  4. Restauración y sostenibilidad del medio costero-litoral.
  5. Diseño y gestión de paseos marítimos.

Bloque 5: Turismo náutico e instalaciones náutico-deportivas. 5 horas. Vicent Esteban.

  1. La práctica de la náutica deportiva.
  2. Las instalaciones náuticas de recreo.
  3. Tipología de usuarios y servicios náuticos.
  4. Organización y gestión de infraestructuras náuticas.
  5. Impacto socio-económico de las instalaciones náuticas de recreo.

Construcción de puentes mediante cimbra autolanzable sobre tablero

A.T. AVE NORTE-NOROESTE: NUDO VENTA BAÑOS 01. http://www.ar2v.com

Las cimbras autolanzables, también llamadas autocimbras o cimbras de avance, se utilizan para el hormigonado de tableros de puentes o viaductos vano a vano. Son capaces de trasladarse a lo largo del puente por sus propios medios (“cimbras-máquina”). En el caso de las cimbras autolanzables sobre tablero, se solucionan algunos problemas como los gálibos estrictos o la posibilidad de utilizar la cimbra como carril de rodadura de un pórtico grúa que lleve los materiales y medios auxiliares. Sin embargo es una estructura más pesada y compleja, de mayor coste y dificultad de montaje y maniobra, por lo que no es tan habitual su uso como en el caso de autocimbras bajo tablero.

A continuación os dejo un Polimedia explicativo sobre este medio auxiliar, que espero que os sea de interés.

Os dejo un vídeo sobre una cimbra autolanzable de una luz de 90 m.

Referencias:

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

¿Fueron los romanos más ingenieros que arquitectos?

Reconstrución de un Polyspastos romano en Bonn, Alemania.

En una entrada anterior tuvimos la ocasión de repasar brevemente algunos aspectos de la ingeniería romana, como fue la construcción de calzadas o puentes. Como podréis comprobar, el tema da para varias enciclopedias y el objetivo aquí es simplemente dar un par de pinceladas para despertar la curiosidad sobre aspectos históricos de la ingeniería. Además, en internet existen multitud de enlaces que permiten ampliar el tema considerablemente.

Podríamos empezar por la ingeniería municipal. Las ciudades del imperio romano disponían de sistemas de drenaje y suministro de agua, calefacción, baños públicos, calles pavimentadas, mercados de carne y pescado y otras infraestructuras municipales comparables a las actuales. La aplicación de la ingeniería en las artes militares y en los problemas de navegación, adecuación de puertos y bahías implicó, como en los otros casos, el uso de máquinas, materiales y procesos, que hablan del grado de desarrollo de la ingeniería romana, de la cual quedó constancia escrita en muchos tratados escritos en aquel tiempo y entre los cuales descuellan los trabajos de Marco Vitruvio. Su libro De Archítectura, lo escribió durante primer siglo d.C., donde incluyó el concocimiento del momento sobre materiales y métodos de construcción, hidráulica, mediciones, diseño y planificación urbana. Otra innovación en el ámbito urbano fue la invención del alumbrado público en la ciudad de Antioquía, aproximadamente hacia el año 3~0 d.C. Una innovación interesante de esa época fue la reinvención de la calefacción doméstica central indirecta, que se había usado cerca de 1200 a.C., en Beycesultan, Turquía. Lo extraño es que, tras la caída del Imperio Romano, este tipo de calefacción no se volviera a utilizar.

Restos de los acueductos Aqua Claudia y Anio Novus, integrados como portones de la Muralla Aureliana en el año 271.

Los romanos también fueron buenos ingenieros hidráulicos. En comparación con los anteriores, sus acueductos eran mayores y más numerosos. Casi todo lo que se sabe actualmente del sistema romano de distribución de aguas proviene del libro “De Aquis Urb’is Romae” de Sexto Julio Frontino, quien fue autor del Aquarum de Roma, de 97 a 104 a.C. Frontino llevaba registros de la utilización del agua, que indican que el emperador usaba el 17%, el 39% se usaba en forma privada, y el 44% en forma pública. Se calcula que en Roma diariamente se consumían entre 380 y 1 100 millones de litros de agua. La fracción del 44% para uso público estaba subdividida adicionalmente en un 3% para los cuarteles, el 24% para los edificios públicos, incluidos once baños públicos, un 4% para los teatros, y un 13% para las fuentes. Había 856 baños privados a la fecha del informe. En todo caso, la administración del agua en Roma era una tarea considerable e importante. Gran parte del agua que supuestamente debería entrar a la ciudad jamás lo hizo, debido a las derivaciones que tenían escondidas los usuarios privados.

Para resolver el problema de la toma de agua para las ciudades, los romanos construyeron acueductos  siguiendo en esencia el mismo diseño, que usaba arcos semicirculares de piedra montados sobre una hilera de pilares. Cuando un acueducto cruzaba una cañada, con frecuencia requería niveles múltiples de arcos. Uno de los mejor conservados de la actualidad es el Pont du Gard en Nimes, Francia, que tiene tres niveles. El nivel inferior también tenía una carretera. Los romanos usaron tubería de plomo y luego comenzaron a sospechar que no eran salubres. Sin embargo, el envenenamiento por plomo no se diagnosticó específicamente, sino hasta que Benjamín Franklin escribió una carta en 1768 relativa a su uso.

Las técnicas utilizadas en la edificación por los romanos eran muy depuradas empleando, ya en aquellos tiempos, en sus edificios públicos el hormigón y el ladrillo, construyendo grandes bóvedas, como la del Panteón de Roma de 44 m de luz, realizada en el siglo II a.C. e impresionantes acueductos. Estas técnicas no fueron superadas en Europa hasta cerca del 1800. Uno de los grandes triunfos de la construcción pública durante este periodo fue el Coliseo, que fue el mayor lugar de reunión pública hasta la construcción del Yale Bowl en 1914.

El Coliseo de Roma

En el campo de las cimentaciones de los edificios, una de las innovaciones reseñables son sus plataformas de hormigón en masa, donde la capacidad hidráulica del cemento puzolánico permitió la colocación de las plataformas de cimentación incluso bajo el agua. En algunos casos, la utilización de estas cimentaciones continuas de gran espesor (losa de cimentación), supuso una solución eficaz en suelos pobres, con riesgo de asientos diferenciales. Así, por ejemplo, El Coliseo se alza sobre el antiguo lago del palacio de Nerón, sobre un anillo macizo de 12 m de profundidad y 170 m de diámetro, compuesto de hormigón y de grandes bloques de piedra. De forma similar, el Panteón descansa sobre un anillo sólido de 4,5 m de profundidad y más de 7 m de anchura.

El Panteón de Agripa o Panteón de Roma.

La ingeniería civil romana, y sobre todo la rama que se dedicó a las obras marítimas, experimentó un gran avance cuando descubrió la forma de fabricar morteros y hormigones hidráulicos. Vitruvio comentaba las condiciones para la construcción de distintas obras marítimas. Por ejemplo, en el caso de un dique vertical de hormigón en masa establecía que era necesaria la existencia de una playa apropiada, calidad de los fondos aceptable, posibilidad de utilizar en obra el cemento puzolánico y solicitaciones de oleaje de pequeña entidad. El procedimiento constructivo comenzaba construyendo un recinto tablestacado mediante la hinca de maderas de roble. Posteriormente, se procedía a sanear sus capas superficiales dragando, al mismo tiempo que se realizaba el perfilado de la cimentación. Las dragas eran manuales, iguales a las que se han utilizado hasta principios del siglo XIX. Posteriormente, se hormigonaba bajo el agua, llenando el recinto de conglomerado hidráulico. Se desencofraba retirando las tablestacas y se procedía a un nuevo avance repitiendo los pasos descritos. Se finalizaba la obra coronando el dique con un cabecero realizado mediante muros perimetrales de ladrillo o sillería. El hueco entre ellos se rellenaba de “todo uno” y sobre este material disgregado, se construía la calzada. Se desarrollaron grúas y barcazas que se utilizaron intensivamente en la construcción. Otro de los procedimientos constructivos a destacar es la de los cajones flotantes celulares herméticos, precursor de los diques monolíticos actuales. También hicieron uso de diques con baja cota de coronación (como en Cesarea Marítima, Israel en el 20 a.C.) para reducir la energía del oleaje antes de alcanzar el dique principal. El mayor complejo portuario artificial fue el Puerto Imperial de Roma, diseñado por Trajano, con una dársena hexagonal y un tráfico de trigo con Egipto y Francia de 300,000 t anuales.

Por supuesto, nos dejamos para otros posts, otros aspectos que irán surgiendo sobre la ingeniería y la arquitectura romanas.

Os dejo un vídeo explicativo de la construcción de los muros en este periodo.

 

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingenierías íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Draga de succión estacionaria

http://www.hollandmt.com/
http://www.hollandmt.com/

La draga de succión estacionaria (plain suction dredger, en inglés) es una máquina hidráulica con un mecanismo de succión sumergible similar a las dragas de succión en movimiento. Pero a diferencia de estas, las dragas estacionarias operan ancladas en un punto fijo y también difieren en cómo se carga el material extraído. En general, estas dragas no tienen una cántara y el material se transporta a través de gánguiles o se bombea por tuberías si la zona de vertido está cercana a la de extracción.

Al estar ancladas, estas dragas crean un hueco en forma de cono invertido en la zona de dragado (ver Figura 1). Por eso, no se recomiendan para proyectos que requieren un mayor grado de precisión, como el mantenimiento de canales de navegación o la nivelación de terrenos. En cambio, son ideales para la extracción de material granular en la restauración de terrenos.

Estos equipos están diseñados para dragar materiales sueltos no cohesivos, como arenas de grano medio. La capacidad de la bomba de succión también influye en el tipo de material que se puede dragar. Ofrecen altos rendimientos cuando la capa de sedimentos es de al menos 3 m de espesor. La profundidad máxima de dragado suele ser de aproximadamente 50 m. La draga es capaz de trabajar con olas de hasta 3 m de altura y corrientes con velocidades máximas de 3 nudos. Son útiles en zonas de trabajo lejanas a las de vertido, pero tienen la limitación de que la descarga del material en gánguiles solo es posible en aguas tranquilas.

Por lo tanto, las principales ventajas de esta técnica son la capacidad de extraer materiales ubicados bajo capas estériles, la posibilidad de realizar dragados en aguas poco profundas y una alta producción en capas de sedimentos gruesos y sueltos. Por otro lado, sus desventajas incluyen su sensibilidad a las condiciones marítimas si la carga se encuentra sobre gánguiles, así como su uso limitado a materiales granulares.

Figura 2. Draga de succión estacionaria (Bray, Bates y Land, 1997)

El modo de operación y su ciclo de trabajo (ver Figura 3) es el siguiente:

  • Estacionamiento en la zona de trabajo
  • Posicionamiento de la barcaza junto a la draga o conexión a las tuberías de impulsión en el caso de bombeo
  • Descenso de los equipos de succión hasta la capa de material granular
  • Puesta en marcha de la succión y de los cabezales inyectores de agua que fluidifican y arrastran el terreno
  • Carga de los gánguiles a través de conductos elevados con difusores o bombeo
Figura 3. Ciclo de producción de las dragas estacionarias de succión (Bray, Bates y Land, 1997)

Las dragas estacionarias no necesitan un gran equipo auxiliar. Se hacen ajustes en los cabezales de succión y en la forma de descarga. Para dragar a profundidades elevadas, se coloca la bomba de dragado en la parte inferior del tubo de succión, solucionando las limitaciones del cabezal hidráulico de succión. En otras situaciones, se agrega una bomba de chorro en la entrada del conducto de succión. En cualquier caso, estos cambios tienen como objetivo aumentar la cantidad de material que entra en el conducto de succión o hacer más fluidos los sedimentos del fondo marino cerca de la entrada del conducto de succión, lo cual se logra con inyectores de agua de alta presión.

En cuanto a los métodos de descarga, tenemos los siguientes:

  • Descarga por el fondo: Este método es similar a la descarga de las dragas de succión en marcha.
  • Conductos laterales: Esta opción es una alternativa a la descarga sobre cántara. La mezcla bombeada se dirige a través de una tubería hasta los conductos laterales, y desde allí se cargan las barcazas o gánguiles.
  • Tubería: Las dragas estacionarias también pueden descargar el material de manera similar a las dragas con cabezal cortador, conectando tuberías flotantes por donde se desplaza el material dragado.

He grabado un vídeo explicativo que, espero, sea de vuestro interés.

Os pongo un vídeo que muestra el funcionamiento de esta máquina de succión. Espero que os sea útil.

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Draga retroexcavadora

Draga retroexcavadora. Fuente: http://ingenieriaycomputacion.blogspot.com.es/2011/02/watermaster-classic-excelente-draga-y.html
Figura 1. http://ingenieriaycomputacion.blogspot.com.es/2011/02/watermaster-classic-excelente-draga-y.html

La draga retroexcavadora (backhoe/dipper dredge, en inglés) es una draga mecánica montada sobre un pedestal situado en un extremo de una pontona. Está equipada con un cazo con una capacidad entre 1 y 20 m³. Desarrollada a partir de las retroexcavadoras hidráulicas terrestres, en ciertas ocasiones se fijan directamente estas últimas a un pontón. Para asegurar su estabilidad durante la excavación, la barcaza se ancla mediante tres pilones: uno en la popa y dos en los costados de la proa. Las dragas de retroexcavadora son típicas en Europa, mientras que en Estados Unidos es más normal el uso de palas frontales.

La draga retroexcavadora es apta para suelos de diferentes tipos, incluso rocas con una resistencia a compresión simple de hasta 10 MPa. La profundidad de dragado oscila entre 2 y 24 m. Puede trabajar en condiciones de oleaje con alturas máximas de 1,5 m y velocidades máximas de corriente de 2 nudos. Aunque es adecuada para trabajar en espacios reducidos, su empleo en regeneraciones costeras es limitado debido a la necesidad de barcazas o vertido directo. Además, su operación discontinua reduce su producción en comparación con otras dragas. El campo de aplicación de la draga retroexcavadora es similar al de las dragas de rosario, siendo más adecuada para dragar rocas y suelos con menor resistencia al oleaje.

La cuchara de la retroexcavadora tiene una cara cóncava orientada hacia atrás, lo que permite que durante la excavación el cucharón se acerque a la plataforma. La cuchara entra en la capa de material a extraer de arriba hacia abajo. Este método de trabajo es similar al de las dragas de pala frontales excavando coronas circulares. Sin embargo, estos equipos pueden operar tanto en avance como en retroceso, lo que resulta en menos derrames y un fondo dragado de mejor calidad. La capacidad de trabajar en ambas direcciones mejora el rendimiento en la extracción de materiales compactos o rocas rotas. Las dragas retroexcavadoras con cables son muy efectivas en el dragado de arcillas cohesivas, pues se pueden instalar empujadores en la parte inferior del brazo de excavación que facilitan la descarga del material.

Figura 2. Draga retroexcavadora con accionamiento por cables o hidráulico

Método de operación:

  • Situación del pontón en la zona de trabajo (estacionaria)
  • Descenso de los 3 pilonos de anclaje (spuds) que absorben esfuerzos horizontales de la excavación
  • Descenso del brazo de la retroexcavadora, extracción y elevación del material
  • Carga sobre gánguiles
  • Izado de los 2 spuds situados en el tercio delantero. El spud de popa hace girar a la draga sobre su eje (eje motor). Reinicio del proceso.

 

Figura 3. Ciclo de trabajo de la draga de retroexcavadora (Bray et al., 1997)

La draga de retroexcavadora presenta varias ventajas, tales como: la capacidad de dragar diferentes tipos de terrenos, incluso aquellos con escombros y cantos; la capacidad de trabajar en espacios reducidos y controlar la posición y profundidad con precisión; la ausencia de necesidad de anclajes; la dilución mínima del material dragado; y un tiempo de ciclo más corto en comparación con una draga de cuchara de tamaño similar. Además, los componentes clave del equipo se producen en serie, lo que reduce los costos de instalación y mejora la calidad y el control. Se requiere solo una persona para realizar las operaciones de dragado, aunque por motivos de seguridad y ayuda en la maniobra del pontón, se recomienda un equipo de 2 o 3 personas.

El principal desafío de la draga de retroexcavadora es su baja capacidad de producción en comparación con otros equipos de dragado que trabajan de forma continua. Este inconveniente es común entre la mayoría de los equipos de dragado mecánicos, excepto la draga de rosario, que también depende de la disponibilidad de los gánguiles de descarga. La habilidad del operador es crucial para lograr un perfil final de trabajo uniforme, sin embargo, también es importante tener en cuenta las características del terreno a dragar.

He grabado un vídeo sobre esta draga, que espero os sea de interés.

Os dejo unos vídeos donde podréis ver cómo funciona esta draga. Espero que os gusten.

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.