UPV



procedimientos de construcción


Publicada By  Víctor Yepes Piqueras - arco, estructuras, procedimientos de construcción, Puentes    

Lanzamiento del Puente de Lanjarón. Torroja Ingeniería

Os paso una animación realizada por José Antonio Agudelo que muestra el proceso constructivo del Viaducto de Lanjarón en Granada, España. Se trata de un puente mixto, proyectado por Torroja Ingeniería, siendo un arco atirantado por su propio tablero que sólo transmite reacciones verticales al terreno.

Los datos más interesantes del puente son: 112,6 m de luz y 15 m de altura. En las referencias os dejo un artículo de Mario García González que explica los detalles del viaducto. Lo interesante del procedimiento constructivo es que, en una primera fase de empuje, el puente queda en voladizo un 50%, y en una segunda fase se realiza un tiro para dejar la estructura en su emplazamiento definitivo.

Referencias:

García-González, M. (2002). Viaducto de Lanjarón. II Congreso de ACHE de puentes y estructuras. link

1 diciembre, 2017
 

Publicada By  Víctor Yepes Piqueras - arco, estructuras, ferrocarril, procedimientos de construcción, Puentes    

El viaducto de O Eixo se encuentra situado en el amplio valle, que forma el Rego de Aríns, entre las localidades de O Eixo de Arriba y O Eixo de Abajo, de las que recibe su nombre. Forma parte del corredor norte-noreste del tren de alta velocidad Lalín-Santiago (A Coruña). Tiene una longitud total de 1.224,4 m repartidos en 25 vanos con luces de 42,5 + 25 x 50 + 39,10 m. Presenta un canto variable de 4,0 a 2,75 m y un ancho de tablero de 14,0 m. Las pilas, que varían entre 9 y 84 m de altura, son de sección octogonal de 5,5 m de anchura y variable en altura. Ocupando los vanos 12 y 13 se proyecta un arco ligeramente ojival donde se materializa el punto fijo.

En cuanto al proceso constructivo, cabe destacar que las pilas se ejecutaron mediante encofrado trepante, mientras que el tablero se construyó mediante cimbra autolanzable y ejecución vano a vano. El hormigonado se ejecutó en dos fases. En la primera se hormigona toda la sección compuesta por la tabla inferior y las almas. En la segunda fase se hormigona la losa superior. Posteriormente se introduce el postensado de la misma y se le da continuidad con los siguientes vanos mediante el cruce de tendones en los frentes de fase, evitando de esta manera disponer conectadores.

El arco se ejecutó en dos mitades ejecutadas por separado, ubicando cada uno de los semiarcos en vertical junto a las pilas 11 y 13. Una vez hormigonados los dos semiarcos realizó el giro de ambos por medio de unas rotulas metálicas ubicadas junto a las zapatas. Una vez colocados los dos semiarcos en su posición definitiva se hormigona la zona de empotramiento con la zapata uniendo las armaduras de espera de la pila con las de la zapata, utilizando manguitos. Dicha rótula quedará embebida posteriormente al hormigonarse la zona de empotramiento, pila-encepado.

Los semiarcos quedan fijos entre sí mediante el hormigonado de una zona de unión de ambos y con armadura pasiva. El arco una vez monolítico lleva en su parte superior un tetón de hormigón armado que quedará solidarizado con un hueco dejado en el tablero mediante un pretensado vertical y otro horizontal que se tesará en la fase correspondiente, es decir, una vez realizado el tesado de la fase 12.

Una descripción completa la podéis ver en el siguiente enlace: http://e-ache.com/modules/ache/ficheros/Realizaciones/Obra109.pdf

También os aconsejo el siguiente link de Xosé Manuel Carreira: http://notonlybridges.blogspot.com.es/2008/01/bridge-for-our-high-speed-train.html

 

Para aclarar estos aspectos constructivos, os dejo un vídeo donde se describen las peculiaridades, especialmente la construcción del arco. Espero que os guste.

También os dejo un vídeo (en gallego) sobre el viaducto:

28 noviembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, procedimientos de construcción, Puentes    

Puente construido por empuje

El procedimiento consiste en fabricar o montar el tablero detrás del estribo y después empujarlo deslizándolo sobre las pilas hasta alcanzar su posición definitiva al llegar al otro estribo. Este tablero, también puede componerse mediante dovelas prefabricadas u hormigonadas “in situ”. El método del empuje ha permitido resolver satisfactoriamente la construcción de puentes sobre obstáculos importantes situados por debajo del tablero. Este procedimiento es particularmente ventajoso en los puentes muy largos, pues permiten aplicar la construcción industrializada -es rentable a partir de los 600 metros de longitud-.

Este sistema constructivo fue desarrollado en la segunda mitad del siglo XIX para ubicar en su situación definitiva grandes viaductos metálicos de celosía. De hecho, la ligereza de los tableros metálicos y mixtos es una ventaja sobre los de hormigón, mucho más pesados; sin embargo es habitual la construcción de estos puentes con hormigón pretensado. Los puentes de ferrocarril, en particular, son estructuras idóneas para construirlas mediante empuja, pues han de soportar, además de su peso propio, unas cargas de servicio elevadas que obligan a dimensionar secciones con una gran capacidad resistente. Al construir el puente, donde sólo actúa el peso propio, el exceso de capacidad puede aprovecharse sin sobredimensionar la estructura.

Pescante de lanzamiento en Papiol (Barcelona). http://www.cemetasa.com/

El primer viaducto de hormigón empujado fue el Puente de Ager en Austria en 1959, donde se usaban dovelas cortas prefabricadas; sin embargo, muchos autores citan el puente sobre el río Caroní (Venezuela), terminado en 1964, de Leonhardt y Baur como iniciadores de esta técnica con el hormigón. Posteriormente se consolidó el método de dovelas largas hormigonadas “in situ” en una instalación industrializada que se monta detrás del estribo, aunque sigue siendo habitual el empleo de dovelas de entre 10 y 25 metros de longitud, tanto fabricadas “in situ” como prefabricadas.

El campo de luces óptimo para los tableros empujados se encuentra entre los 30 y 60 metros, aunque de forma excepcional dicho intervalo se amplia desde los 20 a los 90 metros.

Muchas empresas españolas han realizado puentes empujados (Ferrovial, Dragados, FCC, etc.), y seguro que me dejo a alguien por nombrar. Como ejemplo de construcción de puentes empujados, os dejo un vídeo sobre la construcción de uno de los puentes más largos empujados del mundo. Lo construyó ACCIONA para el Ministerio de Transporte de Quebec (Canadá). La autopista consta de 42 kilómetros de longitud y dos carriles por sentido. La obra incluye la ejecución de dos puentes -uno de 1.860 metros sobre el río St.Lawrence y otro de 2.550 metros sobre el canal Beauharnois- el segundo puente empujado más largo del mundo; donde se ha conseguido superar la dificultad de la traza en cambio de altura y dirección horizontal. Os dejo un enlace a las características técnicas. Ha obtenido dos de los premios más relevantes del sector concesional el Gold Award concedido por The Canadian Council for Public-Private Partnerships y el North America Deal of the Year, por PFI.

Dejo aquí el cómo se realizó el lanzamiento en el viaducto de Millau.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

2 noviembre, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, procedimientos de construcción, Puentes    

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León)

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León). Fotografía de V. Yepes.

La construcción del tablero de un puente atirantado puede realizarse mediante voladizos parciales que pueden construirse en obra o bien pueden ser prefabricados. El procedimiento constructivo es similar al de la construcción de tableros de puentes tipo viga, con la diferencia de que aquí se van montando los tirantes para fijar las estructuras parciales, que se van montando con grúas o similar.

En este tipo de procedimiento constructivo es necesario considerar que la estructura parcial formada por el voladizo en el frente de avance provoca en numerosas ocasiones esfuerzos sobre el tablero mayores de los que va a tener cuando el puente esté en servicio. Es por ello que estos voladizos se reducen en su dimensión lo máximo posible, aumentando con ello el número de tirantes necesarios.

Atirantado momentos 1

Ley de flectores antes de tesar la dovela. Dibujo: V. Yepes.

La diferencia de esfuerzos entre la estructura parcial y la definitiva son, entre otros, los siguientes:

  1. La estructura final tiene presenta un tablero continuo, que muestra un comportamiento estructural diferente al caso de tener los extremos en voladizo durante la construcción.
  2. El tablero definitivo se encuentra en un estado de compresión axil importante, superior al tablero en proceso de construcción, a excepción del centro del vano principal y de los extremos de los vanos de compensación, el tablero presenta un estado.
  3. El voladizo en construcción debe soportar al siguiente elemento hasta que se monta, además del peso de los medios auxiliares si el montaje se realiza desde la parte ya construida.
  4. El momento flector del voladizo se prolonga más allá de la ménsula libre, con un máximo que se sitúa varios tirantes atrás, dependiendo del peso del tablero, de los medios auxiliares y de las rigideces del dintel y tirantes.

 

Para solucionar este efecto contraproducente del voladizo se pueden aplicar varios procedimientos constructivos:

  1. Se puede reforzar el voladizo mediante un pretensado adicional para reducir los momentos máximos del voladizo. Este exceso de carga debe retirarse en cuanto pase el efecto del voladizo para evitar sobreesfuerzos en la estructura. Este proceso de tesado y destesado puede complicar la construcción, por lo que a veces se sobredimensionan los materiales en el dintel o se sobretesan los tirantes, tal y como se hizo en el puente de Barrios de Luna.
  2. Se puede reducir peso en el voladizo si se construye una parte del tablero. Una vez se atiranta, y tras un desfase en el ciclo de avance, se completa su construcción. Este método se ha utilizado mucho, por ejemplo en el puente de Oberkassel, en Düsseldorf, que presenta tirantes muy separados. Aquí se avanzó sólo con la célula central del cajón, procedimiento que también se utilizó en el puente Flehe, cerca de la misma ciudad. En el puente de Annancis (Canadá) se avanzaba con vigas metálicas laterales y transversales, hormigonándose después la losa.
  3. Otra posibilidad es cimbrar el voladizo hasta que se atirante. Se puede atirantar provisionalmente el carro de avance hasta el hormigonado, tal y como se hizo en el puente sobre el río Waal (Holanda). Otra posibilidad menos costosa y fácil es la cimbra convencional que obliga a inmovilizar el extremo de la zona construida, lo que obliga a soportar una gran parte del peso de la dovela anterior. Esta solución se ha empleado en el puente de Sama.
  4. Cuando la distancia entre tirantes es grande, se pueden colocar tirantes provisionales desde la torre definitiva o mediante torres auxiliares. Las torres provisionales se apoyan en el mismo lugar de los anclajes definitivos anteriormente montados para evitar flexiones adicionales. El atirantamiento se traslada sucesivamente según avanza la construcción. Este procedimiento se usó en el puente Kniebrucke en Düsseldorf.
  5. Otra posibilidad que se aleja del procedimiento de construcción por voladizos sucesivos consiste en disponer apoyos provisionales bajo el tablero, o bien un único apoyo en el extremo del voladizo que se eliminará al colocar los tirantes. Así se construyó el puente de Bratislava sobre el Danubio.

Puente de Oberkassel sobre el Rhin, en Düsseldorf. Fuente: https://commons.wikimedia.org/wiki/File:Oberkassel_Bruecke.jpg

 

Puente Flehe sobre el Rhin, cerca de Düsseldorf. Fuente: https://commons.wikimedia.org/wiki/File:Fleher_Br%C3%BCcke-2.jpg

 

Puente Kniebrucke en Düsseldorf sobre el Rhin. Fuente: https://de.wikipedia.org/wiki/Rheinkniebr%C3%BCcke#/media/File:Duesseldorf_1915.JPG

 

Puente de Bratislava, sobre el Danubio. Fuente: https://en.wikipedia.org/wiki/Cable-stayed_bridge#/media/File:Novy_Most_d.JPG

Referencias:

FERNÁNDEZ-TROYANO, L. (1999). Tierra sobre el agua. Visión histórica universal de los puentes. Colegio de Ingenieros de Caminos, Canales y Puertos. Colección de Ciencias, Humanidades e Ingeniería nº 55, Madrid.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

23 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - historia, hormigón, ingeniería civil, investigación, maquinaria, procedimientos de construcción    

Puente de Alcántara, puente romano en arco construido entre 104 y 106, que cruza el río Tajo en la localidad cacereña de Alcántara.

Resulta gratificante tener la oportunidad de conversar tranquilamente en un medio de comunicación como es Radio Nacional de España sobre ciencia, tecnología e ingeniería. El otro día me entrevistaron en el programa “24 horas“, presentado por Miguel Ángel Domínguez sobre la construcción romana, el hormigón y otros aspectos relacionados con la ingeniería civil y la inteligencia artificial. Se trata de un programa que dedica un espacio los miércoles a la tertulia científica y es, para la ingeniería, una oportunidad para acercar la técnica al gran público, facilitando la labor tan importante de divulgación científica.

 

 

Hablamos sobre las razones por las cuales las construcciones romanas han llegado hasta nuestros días, de la calidad de los hormigones romanos, del impacto medioambiental de la fabricación del cemento Portland, de la tecnología actual de la construcción y de la aplicación de la inteligencia artificial en el diseño automático y óptimo de puentes. Aunque la entrevista se quedó muy corta y nos dejamos en el tintero muchas cosas, os paso el post para que lo escuchéis en cualquier momento. También tenéis otras entrevistas anteriores relacionadas con el puente Hong Kong-Zhuhai-Macao, o con el Golden Gate. Espero que os sean de interés.

 

 

Publicada By  Víctor Yepes Piqueras - estructuras, procedimientos de construcción, Puentes    

858802_331527263630484_1482261224_oUna forma interesante de construir un puente con dovelas prefabricadas es mediante un pórtico auxiliar que permite la sujección de estas dovelas en un vano determinado. Las cimbras autoportantes suelen emplearse en puentes con muchos vanos de luces moderadas. Se trata de una viga metálica que se apoya en las pilas del puente y que permite la construcción completa de uno o varios vanos. Posteriormente la cimbra se traslada horizontalmente apoyándose el las pilas del puente hasta el vano siguiente. Este procedimiento permite un ritmo elevado de construcción, similar al de las vigas prefabricadas. La amortización de estos medios exige aproximadamente cuatro usos de los mismos en obras de similares características con longitudes superiores a los 300 metros, aunque existe la posibilidad para el contratista de alquilar estos equipos posteriormente.

Para ver este procedimiento constructivo, os dejo la siguiente animación que creo es de interés:

A continuación podemos ver un vídeo realizado por voxelestudios del proceso constructivo del tablero de los viaductos de Contreras, que con autocimbras se ejecutaron tramos de luces de 66 m.

5 octubre, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, ingeniería civil, procedimientos de construcción, Puentes    

Pont Antig Regne de València

Vista inferior del Pont Antig Regne de València, de Salvador Monleón. Imagen: V. Yepes (2013)

Seguimos en este post con la divulgación de los aspectos básicos de la construcción de puentes viga de hormigón pretensado, completando otros posts anteriores sobre este mismo tema.

Uno de los ingenieros que más contribuyó al desarrollo del hormigón armado, y que tuvo una actuación más destacada en el origen y desarrollo del hormigón pretensado fue el francés Freyssinet. Sin embargo, no fue hasta después de la Segunda Guerra Mundial cuando los puentes viga de hormigón pretensado adquirieron toda su potencia y desarrollo. El hormigón pretensado ha demostrado sus ventajas económicas y técnicas tanto para puentes de luces medias (vigas prefabricadas, por ejemplo), como en grandes luces (puentes empujados y atirantados, entre otros). El récord de luz mundial para un puente cajón de hormigón pretensado es de 330 metros en Shibanpe (China), terminado en 2005.

Tal es la importancia de que el proceso constructivo de un puente sea sencillo y económico, que los puentes viga se clasifican en función de dichos procedimientos. En general se pueden construir los puentes “in situ”, con piezas prefabricadas, o de una forma mixta. Además, salvo que el puente sea muy pequeño, los puentes viga se construyen por partes, o bien en subdivisiones longitudinales (vigas independientes que se unen mediante una losa, por ejemplo) o en subdivisiones transversales (dovelas de sección completa, que dan lugar a una gran variedad de métodos constructivos).

Los procedimientos constructivos de los puentes viga de hormigón pretensado pueden clasificarse en: (a) construcción sobre cimbra, (b) construcción por voladizos sucesivos, y (c) construcción por traslación horizontal o vertical.

1. Construcción sobre cimbra

Un puente viga de hormigón pretensado puede construirse sobre una cimbra hormigonando “in situ”, o bien con dovelas prefabricadas. Las cimbras pueden apoyarse directamente sobre el suelo o ser cimbras móviles autoportantes.

La cimbra también puede emplearse en la construcción con dovelas prefabricadas. Las dovelas se montan sobre la cimbra y se unen entre sí mediante juntas húmedas (ejecutadas con mortero) o bien juntas secas (adosando las dovelas y pegándolas normalmente con resina epoxi). Posteriormente se solidarizan las piezas mediante un pretensado.

Las luces cubiertas por la construcción sobre cimbra oscilan entre 20 y 50 metros. Por encima de los 20 metros, se recomienda reducir el peso propio de la losa con voladizos laterales o con aligeramientos. Por encima de los 25 metros, convendría adoptar una variación longitudinal de la inercia. Por encima de los 20 metros, la competitividad frente a las vigas prefabricadas sólo se justifica si las condiciones de ejecución permiten abaratar el encofrado. Se pueden alcanzar mayores luces (por encima de 100 metros) con losas hormigonadas “in situ” de secciones en cajón.

 1.1 Cimbra apoyada sobre el terreno

Cimbra de losa de puente pretensado apoyada sobre el terreno

 Hoy día se emplean cimbras metálicas reutilizables, de fácil montaje y desmontaje. En el caso de cimbras altas, se emplean apoyos de gran capacidad y vigas trianguladas de gran canto; son cimbras huecas que permiten el paso de vehículos durante la construcción del puente. Las losas aligeradas construidas sobre cimbra convencional tienen un campo económico de luces entre los 10 y 40 metros. Con sección celular, el campo óptimo oscila entre los 30 y los 90 metros.

1.2    Cimbras autoportantes

 Las cimbras autoportantes suelen emplearse en puentes con muchos vanos de luces moderadas. Se trata de una viga metálica que se apoya en las pilas del puente y que permite la construcción completa de uno o varios vanos. Posteriormente la cimbra se traslada horizontalmente apoyándose el las pilas del puente hasta el vano siguiente. Este procedimiento permite un ritmo elevado de construcción, similar al de las vigas prefabricadas.

Cimbra autoportante lanzadora de vigas

Cimbra autoportante lanzadora de vigas

 A veces se ha sustituido la viga auxiliar bajo el tablero por un procedimiento por suspensión con pórticos móviles. La secuencia de las operaciones requiere que la parte trasera del pórtico de avance esté apoyada sobre el tablero construido previamente, estando el otro apoyo en la pila siguiente, sobre una base provisional que se suprime posteriormente y se hormigona con el tablero. La viga central de todo el conjunto se extiende sobre dos tramos completos para facilitar el avance por etapas.

 La amortización de estos medios exige aproximadamente cuatro usos de los mismos en obras de similares características con longitudes superiores a los 300 metros, aunque existe la posibilidad para el contratista de alquilar estos equipos posteriormente.

 La principal ventaja de este sistema respecto al de avance por voladizos sucesivos reside en el ahorro de pretensado al no crear en la estructura construida esfuerzos de voladizo durante las sucesivas fases de la obra.

 Los vanos abordables por este método oscilan entorno a los 40 metros, para conseguir resultados económicamente competitivos. Se puede duplicar la luz empleando atirantamientos o apoyos provisionales intermedios.

  2    Construcción por voladizos sucesivos

 La construcción por dovelas, prefabricadas o ejecutadas “in situ”, que avanzan en voladizo sobre las ya erigidas es un procedimiento muy adecuado para las grandes luces, o bien cuando las pilas son muy altas. Las dovelas prefabricadas se izan con medios de elevación potentes y se unen a las anteriores. Si se ejecutan “in situ”, existe un carro de avance que se apoya en las dovelas anteriores. La estabilidad de cada etapa se asegura con el pretensado de cables.

 El primer puente construido por voladizos sucesivos fue el de Santa Catalina, sobre el río Peixe, cerca de Herval (Brasil), en el año 1931, siendo su autor el ingeniero Baumgarten; se trata de un puente de hormigón armado de dintel continuo de tres vanos, con 68 metros de luz en el central. En 1951 Finsterwalder aplica esta tecnología ya con el pretensado en el puente de Balduinstein, sobre el Lahn, con 62.10 metros de luz libre. En España (ver Fernández Casado et al., 1970), fue empleado en sus orígenes en el puente de Almodóvar (1962) y el de Castejón (1968)

 En la construcción con dovelas prefabricadas se pueden distinguir tres etapas (ver Pérez Fadón, 1990). La primera generación, en los años sesenta, las dovelas llevaban juntas de mortero de cemento, llave única a cortante y cables anclados en la propia junta. La segunda se caracteriza por la prefabricación conjugada, el empleo de resinas epoxi en las juntas, las llaves múltiples para el cortante y el anclaje de los cables en el interior de la dovela en unos bloque dispuestos al efecto. La tercera generación, iniciada en Francia, emplea el pretensado exterior y las almas de celosía (puente de Bubiyán en Kuwait, 1983).

La construcción por voladizos sucesivos puede realizarse con una única dirección de avance, la denominada construcción evolutiva; o bien con crecimiento simétrico del tablero a ambos lados de las pilas, voladizos compensados. En el primer caso se suprime uno de los inconvenientes de la progresión simétrica del tablero, con la consecuente multiplicación de equipos (uno por cada frente de avance) o su traslado.

 El campo habitual de aplicación de los puentes construidos por voladizos sucesivos abarca luces entre 50 y 150 metros. Sin embargo, y de forma excepcional, pueden encontrarse puentes con luces de 250 metros construidos por voladizos sucesivos con dovelas atirantadas de forma provisional. Entre los 30 y 50 metros de luz tampoco es muy habitual. A partir de los 200 metros, se entra en competencia con los puentes atirantados.

 3    Construcción por traslación horizontal o vertical

 Se construye el puente, total o parcialmente, fuera de su posición definitiva y después se traslada a su posición definitiva. Dentro de esta familia de procedimientos constructivos se puede distinguir la construcción de puentes con vigas prefabricadas, los puentes empujados, los puentes girados y los trasladados por flotación. Asimismo, y una vez colocado una parte del puente en su posición definitiva, éste puede servir de apoyo para completar la sección mediante la construcción “in situ” o mediante elementos prefabricados del resto de elementos (por ejemplo, el hormigonado de la losa sobre vigas prefabricadas).

 3.1    Puentes de vigas prefabricadas

 La industrialización en la fabricación de vigas de hormigón pretensado permite la construcción de puentes de tramos simples. Son vigas de sección normalmente en T, en I o incluso en cajón que permiten un intervalo amplio de luces. Los cantos de estas secciones varían según la luz y la disponibilidad de elementos prefabricados en el mercado, entre L/18 y L/23. La luz óptima se sitúa entre los 30 y 40 metros, puesto que por encima de 50 metros los medios auxiliares de colocación deben estar ampliamente sobredimensionados. De forma excepcional podría llegarse a los 70 metros de luz. Esta tipología resulta de gran interés cuando el número de vigas a colocar es elevado (40 como mínimo).

Puente de vigas prefabricadas

Puente de vigas prefabricadas

Sobre las vigas prefabricadas se coloca una losa de unos 15 a 20 cm de espesor. Dicho elemento, además de aumentar la capacidad de la sección, cumple la función de rigidizar a la superestructura tanto en el sentido vertical, para repartir las cargas, como en el horizontal, para evitar movimientos relativos entre las vigas y hacer las funciones de un diafragma rígido. Estas losas se construyen normalmente “in situ”, aunque también pueden ser prefabricadas (ver Burón et al., 2000).

 También se hace necesario, en ocasiones, un diafragma que proporcione rigidez lateral a las vigas y a la superestructura en general. Éstos se colocan en los extremos del puente y en puntos intermedios. Los diafragmas intermedios tienen como función primordial restringir el pandeo lateral de las vigas principales garantizando el trabajo en conjunto y un adecuado funcionamiento a flexión.

 Para luces muy pequeñas (menores a 8 metros) pueden emplearse vigas prefabricadas de sección rectangular aligerada. Con luces entre 6 y 20 metros, son el campo óptimo para las vigas de sección en “pi”. Cuando las luces están comprendidas entre los 10 y 25 metros, la sección T es muy efectiva. Para luces mayores, son más eficientes las secciones en I (rango útil entre 15 y 35 metros) o en cajón con aletas (entre 20 y 40 metros).

 En particular, las vigas en cajón con alas o voladizos laterales deben su gran eficiencia a los siguientes factores: (1) mayor rigidez torsional que evita, en la mayoría de los casos, el uso de diafragmas intermedios; (2) ancho inferior para albergar más torones y así proporcionar mayor excentricidad al pretensado aumentando los esfuerzos y el momento resistente de la sección; (3) la presencia de las alas elimina el uso de la cimbra para hormigonar la losa, permitiendo un menor canto (unos 15 cm) frente al requerido por una viga I (unos 18 cm).

 Las secciones prefabricadas tipo cajón de grandes dimensiones de una sola pieza o en dovelas, son muy eficientes debido a su bajo peso y a su rigidez. Estas secciones se emplean en puentes atirantados y empujados. En ocasiones, presentan un doble pretensado, uno longitudinal y otro transversal, éste último para resistir la flexión de las alas.

 Las vigas prefabricadas también pueden dar lugar a tipologías hiperestáticas si se da continuidad mediante un postesado posterior que las cosa al resto de la estructura. Un ejemplo es un tramo hiperestático de 58 metros de luz ejecutado con vigas prefabricadas en cajón para un tramo de tren de alta velocidad (Millanes et al., 2002).

 3.2    Tableros empujados

 El procedimiento consiste en fabricar o montar el tablero detrás del estribo y después empujarlo deslizándolo sobre las pilas hasta alcanzar su posición definitiva al llegar al otro estribo. Este tablero, también puede componerse mediante dovelas prefabricadas u hormigonadas “in situ”. El método del empuje ha permitido resolver satisfactoriamente la construcción de puentes sobre obstáculos importantes situados por debajo del tablero. Este procedimiento es particularmente ventajoso en los puentes muy largos, pues permiten aplicar la construcción industrializada -según Pérez-Fadón (2004), es rentable a partir de los 600 metros de longitud-.

Puente construido por empuje

Puente construido por empuje

 Este sistema constructivo fue desarrollado en la segunda mitad del siglo XIX para ubicar en su situación definitiva grandes viaductos metálicos de celosía. De hecho, la ligereza de los tableros metálicos y mixtos es una ventaja sobre los de hormigón, mucho más pesados; sin embargo es habitual la construcción de estos puentes con hormigón pretensado. Los puentes de ferrocarril, en particular, son estructuras idóneas para construirlas mediante empuja, pues han de soportar, además de su peso propio, unas cargas de servicio elevadas que obligan a dimensionar secciones con una gran capacidad resistente. Al construir el puente, donde sólo actúa el peso propio, el exceso de capacidad puede aprovecharse sin sobredimensionar la estructura.

 El primer viaducto de hormigón empujado fue el Puente de Ager en Austria en 1959, donde se usaban dovelas cortas prefabricadas; sin embargo, muchos autores citan el puente sobre el río Carona (Venezuela), terminado en 1963, de Leonhardt y Baur como iniciadores de esta técnica con el hormigón. Posteriormente se consolidó el método de dovelas largas hormigonadas “in situ” en una instalación industrializada que se monta detrás del estribo, aunque sigue siendo habitual el empleo de dovelas de entre 10 y 25 metros de longitud, tanto fabricadas “in situ” como prefabricadas.

 Millanes y Matute (1999) describen la construcción de un viaducto con un tramo continuo singular compuesto por dos vanos de 40 metros y un vano central de 80 metros que se construyó mediante lanzamiento de las vigas mediante un carro. Se emplearon dos pilas provisionales y se tesó la losa para darle continuidad antes de eliminar dichas pilas.

 El campo de luces óptimo para los tableros empujados se encuentra entre los 30 y 60 metros, aunque de forma excepcional dicho intervalo se amplia desde los 20 a los 90 metros.

3.3    Puentes girados

 Constituye una alternativa a la traslación longitudinal del tablero en el que el giro se efectúa tras construir el puente generalmente en la orilla de un río. Una opción es la construcción de un semipuente en cada lado y luego girarlos sobre las pilas hasta situarlos en prolongación y cerrar la clave, o bien construir la totalidad en una orilla y girarlo apoyando la punta en una barcaza o llevándolo en voladizo.

 3.4    Puentes trasladados por flotación

 Supone un método constructivo empleado con frecuencia en zonas martítimas o grandes ríos. Se trata de trasladar las vigas por flotación y luego izarlas mediante grandes grúas flotantes o con gatos.

 Con este procedimiento se han elevado grandes vigas, como en el caso del puente Nanco del puerto de Osaka (Japón), un puente cantilever construido en 1974 con una viga central de 186 metros y 4500 toneladas, que se llevó por flotación y se elevó mediante cables. El puente de Ohshima, también en Japón, es una viga continua triangulada de 200+325+200 metros de luz, una de las mayores del mundo, y se montó en tres partes, mediante unas grúas flotantes gigantes con capacidad de 3000 toneladas, empalmándose “in situ”.

 Sin embargo, las realizaciones con hormigón pretensado se reducen a vanos de 56 metros de luz y 22 metros de ancho como el cajón bicelular de los vanos laterales del viaducto Jamestown-Verrazzano en Rhode Island (Estados Unidos). En primer lugar se montaba la dovela sobre la pila y después el vano completo, subiéndolo mediante gatos de pretensado.

Referencias

  • AGUILÓ, M. (2003). Cien años de diseño de puentes. Revista de Obras Públicas, 3438: 27-32.
  • ASENCIO, J. (1990). Algunas artes o técnicas en la construcción de puentes. Primera parte. Sigma. Revista editada por la Dirección Técnica de Dragados y Construcciones, 1:7-34.
  • ASENCIO, J. (1990). Algunas artes o técnicas en la construcción de puentes. Segunda parte. Sigma. Revista editada por la Dirección Técnica de Dragados y Construcciones, 2:9-42.BURÓN, M.; FERNÁNDEZ-ORDOÑEZ, D.; PELÁEZ, M. (2000). Tableros prefabricados para puentes de ferrocarril. Revista Técnica Cemento Hormigón, 813: 802-810.
  • FERNÁNDEZ-CASADO, C. (1965). Puentes de hormigón armado pretensado. Editorial Dossat. Madrid
  •  FERNÁNDEZ-CASADO, C.; MANTEROLA, J.; FERNÁNDEZ-TROYANO, L. (1970). Construcción de puentes por voladizos sucesivos mediante dovelas prefabricadas. Revista de Obras Públicas, 3063: 715-730.
  •  FERNÁNDEZ-CASADO, C.; MANTEROLA, J.; FERNÁNDEZ-TROYANO, L. (1983). Viaductos de las autopistas AU-1 y AU-6 en Buenos Aires. Hormigón y Acero, 146.
  •  FERNÁNDEZ-TROYANO, L. (1999). Tierra sobre el agua. Visión histórica universal de los puentes. Colegio de Ingenieros de Caminos, Canales y Puertos. Colección de Ciencias, Humanidades e Ingeniería, nº 55. 1ª Edición. Madrid, 798 pp. ISBN: 84-380-0148-3.
  • GERWICK, B. C. (1997). Construction of Prestressed Concrete Structures. Wiley-IEEE. 616 pp. ISBN: 0471181137.
  • GRATTESAT, G. (1981). Concepción de puentes. Tratado general. Editores Técnicos Asociados, S.A. Barcelona, 495 pp. ISBN: 84-7146-226-5.
  • HARDING, J.E.; PARKE, G.A.R.; RYALL, M.J. (2000). The Manual of Bridge Engineering. Thomas Telford. Great Britain, 1012 pp. ISBN: 0727725912.
  • HARRIS, F. (1992). Maquinaria y métodos modernos en construcción. Bellisco e Hijos Librería Editorial. 1ª Edición española. Madrid, 568 pp. ISBN: 84-85198-57-3.
  • LLAGO, R.; RODRÍGUEZ, G. (2002). Alta velocidad: Nuevas tendencias en el empuje de puentes. Revista de Obras Públicas, 3418: 51-60.
  • MILLANES, F.; MATUTE, L. (1999). Viaducto sobre el río Lambre. Hormigón y Acero, 213: 33-39.
  • MILLANES, F.; MATUTE, L.; ORTEGA, M.; DÍAZ DE ARGOTE, J.I. (2002). Tramo hiperestático entre las pilas P-32 a P-35 del Viaducto sobre el río Jarama en la L.A.V. Madrid-Frontera Francesa. Subtramo II. Actas II Congreso de ACHE. Puentes y estructuras de Edificación. Noviembre, Madrid.
  • MONLEÓN, S. (1986). Curso de puentes. Vol. 1. Colegio de Ingenieros de Caminos, Canales y Puertos. Valencia, 216 pp. ISBN: 84-600-4325-8.
  • MURCIA, J.; COELHO, L.H. (1994). Análisis en el tiempo de puentes continuos de hormigón construido a partir de elementos prefabricados. Hormigón y Acero, 192: 55-71.
  • PÉREZ-FADÓN, S. (1990). Voladizos sucesivos por dovelas prefabricadas. Viaducto de Cruzul. Revista de Obras Públicas, 3285: 21-30.
  • PÉREZ-FADÓN, S. (2004). Construcción de viaductos para líneas de FFCC. Tableros empujados. Revista de Obras Públicas, 3445: 47-52.
  • PODOLNY, W.; MULLER, J.M. (1982). Construction and design of prestressed concrete segmental bridges. John Wiley and Sons. New York, 562 pp. ISBN: 0471056588.
  • TONIAS, D.E. (1994). Bridge Engineering: Design, Rehabilitation and Modern Highway Bridges. McGraw-Hill Professional. 470 pp. ISBN: 007065073X.
  • TROITSKY, M.S. (1994). Planning and Design of Bridges. John Wiley and Sons. 318 pp. ISBN: 0471028533.
  • XANTHAKOS, P. P. (1994). Theory and Design of Bridges. Wiley-IEEE. 1464 pp. ISBN: 0471570974.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

2 octubre, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, medios auxiliares, procedimientos de construcción, Puentes    

Esquema del principio de la construcción por voladizos

Esquema del principio de la construcción por voladizos

La construcción por tramos o dovelas, prefabricadas o ejecutadas “in situ”, que avanzan en voladizo sobre las ya erigidas. El tablero avanza por tramos sucesivos soportando la parte construida el peso propio del tramo siguiente. La construcción en voladizo permite liberarse de cimbras y andamios, adaptándose especialmente a puentes con pilas muy altas, con valles extensos y profundos, en ríos con crecidas violentas y repentinas o bien cuando hay que dejar libre un gálibo para la circulación o la navegación.

Este procedimiento se puede usar en puentes rectos, arco y atirantados, de hormigón o metálicos. Las dovelas prefabricadas se izan con medios de elevación potentes y se unen a las anteriores. Si se ejecutan hormigonando “in situ”, existe un carro de avance que se apoya en las dovelas anteriores, asegurando la estabilidad de cada etapa con el pretensado de cables cuando la nueva dovela adquiere la resistencia suficiente.

La técnica del voladizo se utilizó en el siglo XIX en el lanzamiento de obras metálicas, en la construcción de grandes arcos y “cantilever”. Con la llegada del hormigón armado este procedimiento empezó a interesal a los constructores. El primer puente construido por voladizos sucesivos fue el puente sobre el río Peixe en Herval (Brasil), data de 1930, siendo su autor Emilio Henrique Baumgart; se trata de un puente de hormigón armado de dintel continuo de tres vanos, con 68 m de luz en el central. En este puente las armaduras del tablero se extendían mediante manguitos roscados a medida que avanzaba el hormigonado. Sin embargo con hormigón armado se necesitaban muchas armaduras para asegurar la resistencia de las ménsulas y aparecía una fuerte fisuración en el extradós del tablero, lo que provocó que el sistema no tuviese mucho éxito.

Puente de Balduinstein, sobre el Lahn (Alemania). Foto: Claudia Lenau. Fuente: http://structurae.net/photos/132164-balduinstein-bridge

Puente de Balduinstein, sobre el Lahn (Alemania). Foto: Claudia Lenau. Fuente: http://structurae.net/photos/132164-balduinstein-bridge

Sin embargo, con el hormigón pretensado el sistema empezó a desarrollarse plenamente. Así, Freyssinet empezó a utilizar el pretensado para el montaje en voladizo en las primeras dovelas del puente de Luzancy en 1945 y de los cinco puentes sobre el Marne, anclados en los estribos por pretensado. Pero es Finsterwalder quien inicia definitivamente la técnica del voladizo en 1950 en el puente de Balduinstein, sobre el Lahn, con 62,10 m de luz libre, cuando aplica esta tecnología con un pretensado a base de barras que se unían entre sí mediante un sistema roscado. En España, fue empleado en sus orígenes en el puente de Almodóvar (1962) y el de Castejón (1968).

En la construcción con dovelas prefabricadas se pueden distinguir tres etapas. La primera generación, en los años sesenta, las dovelas llevaban juntas de mortero de cemento, llave única a cortante y cables anclados en la propia junta. La segunda se caracteriza por la prefabricación conjugada, el empleo de resinas epoxi en las juntas, las llaves múltiples para el cortante y el anclaje de los cables en el interior de la dovela en unos bloque dispuestos al efecto. La tercera generación, iniciada en Francia, emplea el pretensado exterior y las almas de celosía (puente de Bubiyán en Kuwait, 1983).

La construcción por voladizos sucesivos puede realizarse con una única dirección de avance, la denominada construcción evolutiva; o bien con crecimiento simétrico del tablero a ambos lados de las pilas, voladizos compensados. En el primer caso se suprime uno de los inconvenientes de la progresión simétrica del tablero, con la consecuente multiplicación de equipos (uno por cada frente de avance) o su traslado.

El campo habitual de aplicación de los puentes construidos por voladizos sucesivos abarca luces entre 50 y 250 m. Sin embargo, y de forma excepcional, pueden encontrarse puentes con luces de 400 m construidos por voladizos sucesivos con dovelas atirantadas de forma provisional. Por debajo de 50 m de luz tampoco es muy corriente. A partir de los 200-300 m, se entra en competencia con los puentes atirantados. El rango de luces habitual para dovelas “in situ” es de 125 a 175 m, mientras que para las prefabricadas es algo menor, de 60 a 130 m.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

28 septiembre, 2017
 

Publicada By  Víctor Yepes Piqueras - geotecnia, hidráulica, historia, ingeniería civil, procedimientos de construcción, Puentes    

Quin Shi Huang, fundador de la Dínastia Quin.

En posts anteriores ya hemos hecho mención a la ingeniería primitiva, la desarrollada en Mesopotamia o en la Grecia Clásica. Mención especial merecen los desarrollos alcanzados en la Antigua China, que en el siglo I ya tenía 57 millones de habitantes, superando a Roma, aunque ambos imperios apenas llegaran a conocerse entre ellos. Por tanto, hoy vamos a dar dos pinceladas a las realizaciones de la milenaria China, sabiendo que dejamos muchísima información por el camino. Los cuatro grandes inventos chinos fueron el papel, la brújula, la pólvora y la imprenta.

Una de las más grandes realizaciones de todos los tiempos fue la Gran Muralla China, con más de 4 km de muro en total. Esta muralla tiene unos 10 m de altura, 8 m de espesor en la base y 5 m en la parte superior, por donde discurre un camino pavimentado. Su construcción requirió un elevado número de personas. Los bloques de piedra se traían con rodillos a las zonas previamente excavadas para su colocación. Su construcción se complicaba en zonas con fuertes vientos o en otras de clima desértico. Los materiales empleados fueron los disponibles en cada sitio: piedra caliza, granito o ladrillo cocido. Especialmente eficaz a los impactos de armas de asedio fueron las tapias de arcilla y arena cubiertas con varias paredes de ladrillo. Para hacerse una idea, en el reinado de Qin Shi Huang, que empezó a gobernar en el 221 a.C., se construyeron caminos y vías. Nada menos que 6.800 km durante sus 20 años de imperio, lo cual es muy llamativo si tenemos en cuenta que los romanos, 300 años después, tuvieron un total de 5.984 km, casi mil menos.

 

Vista parcial del sistema de irrigación de Dujiangyan.

Vista parcial del sistema de irrigación de Dujiangyan.

También China tuvo canales desde hace miles de años. El sistema de irrigación de Dujiangyan comenzó en el siglo III a.C., basándose su construcción en un canal que tuvo que atravesar una montaña, lo cual no fue una tarea fácil teniendo en cuenta los procedimientos constructivos de la época. Para salvar dicho problema, se recurrió al calentamiento y enfriamiento repetido de la roca, lo cual fractura la roca y permitía su excavación.  Para evitar la acumulación de limo en el sistema de irrigación, se construyó un dique en el centro del río, cimentados en unos enormes gaviones hechos de bambú.Además, fueron los primeros constructores de puentes, con características únicas. Algunos de sus puentes más antiguos fueron de suspensión, con cables hechos de fibra de bambú.Aunque sin basarse en teorías científicas, los antiguos constructores chinos empleaban un método que está relacionado con los “drenes de arena”. En sus suelos aluviales blandos hincaban pilotes de madera que extraían, a continuación, por rotación. Los agujeros eran rellenados con cal viva bien compactada. Estos pozos de cal absorbían el agua que los rodeaba, produciendo, de este modo, una consolidación acelerada del suelo, siendo éstos los principios del empleo de las técnicas de mejora del terreno.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

21 septiembre, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, ferrocarril, medios auxiliares, procedimientos de construcción, Puentes    

Arcos por atirantamientoSe pueden construir puentes arco por voladizos sucesivos sujetando cada tramo mediante tirantes desde torres provisionales. Una vez se tocan los semiarcos, se puede eliminar el atirantamiento y las torres y construir sobre el arco las pilas y el tablero. Es una técnica similar al avance por voladizos sucesivos de los tableros rectos, pudiéndose realizar con dovelas prefabricadas o bien por carro de avance hormigonando “in situ”. Este procedimiento constructivo permite la construcción de arcos de grandes luces, empleando un volumen de medios auxiliares reducido en comparación con otros métodos.

Este procedimiento constructivo se empleó en el montaje de cimbras, aunque hasta finales del siglo XIX no se empezó a utilizar para construir un arco completo. En efecto, James B. Eads construyó el puente metálico de San Luís (1867-1874) sobre el Mississippi con atirantamientos provisionales. El sistema también lo utilizó Gustave Eiffel en la construcción de los puentes arco metálicos de María Pía y Garabit.

Puente Eads, sobre el Mississippi en San Luís (Misuri). Diseñado por James Buchanan Eads, fue un puente metálico construido en 1874. Con tres arcos de 153, 158 y 153 m dispuso del arco más grande de su tiempo. Destacó también el empleo de cajones de aire comprimido para su cimentación.

Construcción del puente María Pía (Oporto). Gustave Eiffel y Théophile Seyring proyectaron este puente, que con 160 m de luz principal, fue el arco más largo del mundo entre 1877, fecha de su terminación, y 1884.

Viaducto de Garabit , sobre el río Truyère (Francia). Con sus 165 m de luz principal, fue el mayor arco desde 1884 a 1886. El puente lo construyó la compañía de Eiffel.

La técnica empezó a usarse en arcos de hormigón en 1952 cuando Freyssinet empleó parcialmente este método en los arranques de los arcos en los viaductos de la carretera al puerto de La Guaira, en Caracas. El tramo central de la cimbra se elevó desde el fondo del barranco apoyándose en los arranques de arco atirantados.

Construcción del Viaducto 1 de la autopista Caracas la Guaira (Venezuela). Los viaductos, construidos en 1952, son tres puentes arco biarticulados de 152, 146 y 138 m de luz, de E. Freyssinet.

Una realización más reciente construida con este sistema de atirantamiento provisional es el puente arco de ferrocarril sobre el embalse de Contreras en la línea de alta velocidad Madrid-Levante (Manterola et al., 2012). Se trata de un arco de 261 m de luz, con tablero superior de hormigón pretensado y una longitud total de 587, 25 m. Los semiarcos avanzan por voladizos sucesivos mediante hormigonado con carro de avance, para lo cual se disponen dos pilonos metálicos sobre el tablero, en la vertical de unas pilas provisionales.

Puente de ferrocarril sobre el embalse de Contreras. Detalle de la construcción del arco.

A continuación os dejo algunos vídeos que muestran la construcción del viaducto de Contreras. Espero que os sean de interés.

Referencia:

MANTEROLA, J.; MARTÍNEZ, A.; NAVARRO, J.A.; MARTÍN, B. (2012). Puente arco de ferrocarril sobre el embalse de Contreras en la línea de alta velocidad Madrid-Levante. Hormigón y Acero, 63:5-29.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

6 septiembre, 2017
 
|   Etiquetas: ,  ,  ,  |  

Página siguiente »

Universidad Politécnica de Valencia