UPV



prefabricación


Publicada By  Víctor Yepes Piqueras - ciclo de vida, estructuras, hormigón, investigación, optimización, prefabricación, sostenibilidad, toma de decisiones    

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, maquinaria, medios auxiliares, MOOC, Polimedia, prefabricación, procedimientos de construcción, Puentes    

http://www.mexpresa.com

Cuando no es posible el uso de grúas, se puede recurrir a los lanzadores de vigas, vigas de lanzamiento o cimbras autolanzables. Se trata de un procedimiento excepcional debido a su compleja puesta en obra y a su baja productividad. Se emplean si el ritmo de llegada de las vigas a obra es pequeño, por ejemplo un par de vigas al día. Las vigas de lanzamiento requieren personal especializado en su manejo y montaje debido a que los movimientos son complejos y los esfuerzos generados pueden comprometer la estabilidad del conjunto. Estos problemas se complican cuando la rasante vertical del puente presenta acuerdos de radios menores a 12000 m, en cuyo caso la viga se apoya en tres puntos, con sus consiguientes esfuerzos hiperestáticos.

Lanzador de vanos completos. http://www.weiku.com

Las vigas de lanzamiento cubren luces entre 35 y 75 m, con pesos entre 600 kN y 4500 kN y pendientes máximas para el lanzamiento del 5%. Constan de dos vigas reticuladas unidas en sus extremidades sobre las que rueda el tren de los cabrestantes, compuesto por dos carros para elevar la viga a lanzar y un tercero para el desplazamiento longitudinal de la viga y el armazón. Las vigas prefabricadas se transportan desde el acopio al lanzador mediante carros elefante. Téngase en cuenta que los carros pueden moverse a velocidades de 5 km/h mientras que el lanzador solo alcanza los 3 m/minuto.

Os paso a continuación una pequeña presentación que he preparado para explicar este procedimiento constructivo de puentes. También os paso algún vídeo más al respecto que espero os resulten interesantes.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

27 febrero, 2018
 

Publicada By  Víctor Yepes Piqueras - algoritmo, carreteras, ciclo de vida, competitividad, economía, empresas constructoras, estructuras, gestión, hormigón, ingeniería civil, innovación, investigación, modelo matemático, optimización, Planificación, prefabricación, procedimientos de construcción, proyectos, Puentes, riesgos, seguridad, sostenibilidad, toma de decisiones, universidad    

Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. (más…)

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, prefabricación, Puentes    

D. Carlos Fernández Casado junto al puente de Castejón, sobre el Ebro

D. Carlos Fernández Casado junto al puente de Castejón, sobre el Ebro. http://www.cfcsl.com/

Las dovelas prefabricadas utilizadas en la construcción de puentes por voladizos sucesivos se colocan mediante un aparato de elevación y se unen entre sí mediante un adhesivo de alta resistencia a base de resinas epoxi. Para encolar las dovelas, se mantiene la dovela suspendida sobre el tablero y próxima a la dovela anterior y se coloca la resina. La junta de la dovela se trata en acopio con chorro de arena o agua para eliminar desconchones, polvo, aceites y similares. La junta debe estar seca, aplicándose si fuera necesario calor. Se extiende la resina, como si fuera una pintura o un enlucido, en la cara posterior de la dovela suspendida, con un consumo entre 3 y 4 kg/m2, que corresponde a una capa de unos 2 mm de espesor. Este procedimiento de construcción de grandes luces mediante el sucesivo encolado de dovelas requiere la intervención de personal altamente especializado.

En las fotografías se muestra el Puente de Castejón (1972), de la oficina de proyectos Carlos Fernandez Casado S.L, construido por dovelas prefabricadas de 10 toneladas  montadas con blondin; desde una pila se avanzó en voladizo único a partir de un vano lateral construido sobre cimbra, y desde la otra se avanzó en voladizos compensados de 50 metros de longitud. Las dovelas se pegaron  con resina epoxi en vez de mortero, solución que se utilizó en todos los puentes siguientes. Cada voladizo estaba formado por dos cajones que se montaban con dovelas unicelulares unidas in situ con la losa superior.

Puente de Castejón, construido con dovelas prefabricadas encoladas. http://www.cfcsl.com/

Puente de Castejón, construido con dovelas prefabricadas encoladas. http://www.cfcsl.com/

Las resinas presentan las siguientes características:

  1. Se forman por dos componentes, la resina (base) y en endurecedor (reactor).
  2. Existen resinas de acción rápida, media y lenta, correspondientes a la temperatura ambiente en la aplicación: 5-15ºC, 15-25ºC y 25-40ºC, respectivamente.
  3. El tipo de resina determina el tiempo de aplicación, es decir, el transcurrido entre la terminación de la mezcla y el instante en que no se puede aplicar, variando de unos 18 minutos a 35ºC, a un máximo de 40 minutos a 5ºC.
  4. Se dispone entre 45 y 60 minutos, dependiendo de la temperatura, para comprimir las dovelas entre sí y expulsar la resina.
  5. Aunque la resina presenta una resistencia a tensión tangencial superior a 4 MPa y de 75 MPa a compresión, esta resistencia no se considera en el cálculo, relegando la función de la resina a su actuación como lubricante durante el acoplamiento de las dovelas y como impermeabilizante de la junta.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

27 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, prefabricación, Puentes    

Lanzado-De-Porticos-02

Viga de lanzamiento de dovelas. Fuente: http://www.tecsa.com.mx/

La luz máxima económica para puentes construidos mediante dovelas prefabricadas es de unos 150 m. Por encima de 120 m, el coste de los dispositivos de colocación, en particular la viga de lanzamiento, crece rápidamente, al igual que el peso de las dovelas. En cuanto a luces mínimas, se han construido pasos superiores de 18 m con este sistema. Además, la prefabricación se ve favorecida con el número de obras idénticas a construir. Otro factor a tener en cuenta es la superficie total del tablero. Así, y dependiendo de la disponibilidad de los medios auxiliares de la empresa, se necesitaría un mínimo de 5000 m2 de tablero para considerar la utilización de dovelas prefabricadas mediante grúas, cerchas o puentes-grúa, e incluso con equipos móviles que se desplacen por el tablero. En cambio, es necesario un mínimo de 10000 m2 de tablero para colocar las dovelas prefabricadas con una viga de lanzamiento.

En cuanto a las tendencias actuales en este tipo de puentes, podemos citar las siguientes:

  • Supresión de la cola en las juntas: Su eliminación presenta ventajas, no sólo por el coste de la cola, sino por reducir el tiempo de ensamblaje al permitir la unión en una sola operación de todas las dovelas de un vano. Sin embargo su supresión significa renunciar al efecto rubricante e implica una mayor precisión en el ensamblaje de las dovelas para no fisurar las llaves al concentrarse sobre ellas los esfuerzos. La cola permite el reparto de las cargas y la eliminación de los puntos duros originados por rebabas, retracciones diferenciales u otros defectos. Además, las recientes investigaciones muestran que la resistencia a rotura de las uniones con junta seca son inferiores a las de juntas con cola.
  • Elementos prefabricados como encofrado: En paramentos con formas complejas o para acabados de gran calidad, a veces se utilizan paneles prefabricados montados sobre cimbra para su uso como encofrado perdido. Sin embargo, esta solución es más cara.
  • Prefabricación parcial: En obras de tamaño medio muchas veces no se puede amortizar la instalación de prefabricación de las dovelas, por lo que se recurre a prefabricar únicamente las almas y dejar para un hormigonado “in situ” las losas superior e inferior. Los puentes de Brotonne y de Clichy se construyeron con almas prefabricadas. Ello permite reducir la potencia de los medios de montaje, así como la posibilidad de dar continuidad a las armaduras pasivas de la losa inferior y en buena parte de la superior.
  • Pretensado exterior: Permite eliminar las operaciones de montaje y replanteo de vainas, disminuyen las anchuras de almas y se reducen las pérdidas por rozamiento, todo lo cual mejora la eficiencia del pretensado.

 

Pretensado exterior. Fuente: http://www.bbrpte.com/

Pretensado exterior. Fuente: http://www.bbrpte.com/

 

 

18 julio, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - ANDECE, ciclo de vida, economía, edificación, hormigón, prefabricación, sostenibilidad    

BIM: Digitalización productos/sistemas constructivos

Resumen: En un contexto social y reglamentario cada vez más exigente, coexisten tres tendencias que se presentan como una inmejorable oportunidad para la consolidación definitiva de las soluciones prefabricadas de hormigón como la variante industrializada de la construcción de edificios e infraestructuras, con todas las ventajas que ello proporciona en términos de rapidez de ejecución, control más exhaustivo en proyecto y obra, calidad, precisión dimensional, eficiencia y rentabilidad económica. Tanto BIM, como las declaraciones ambientales de producto y la inercia térmica, son tres aspectos que guardan una correlación.

Palabras clave: prefabricado, hormigón, BIM, DAP’s, inercia térmica, sostenibilidad

Referencia:

LÓPEZ-VIDAL, A.; YEPES, V. (2017). BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón. VII Congreso de ACHE, A Coruña, junio de 2017, 9 pp.

Descargar (PDF, 591KB)

6 julio, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, maquinaria, prefabricación    

Las grúas son máquinas que realizan movimientos de giro o traslación, con aparejos auxiliares formados por ganchos o cables que facilitan la elevación de las cargas. La maniobra para ajustar grandes cargas con tolerancias mínimas requiere de experiencia y técnica, sin las cuales, la instalación por ejemplo de grandes vigas prefabricadas sería realmente difícil.

En primer lugar os dejo un vídeo donde ocurre un grave incidente en la colocación de una viga artesa.

Grúas Rigar nos ofrece un vídeo interesante donde se puede ver cómo se eleva, correctamente, una viga artesa de 120 toneladas. Espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Maquinaria auxiliar y equipos de elevación. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 200 pp.

26 junio, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - ANDECE, BIM, hormigón, prefabricación    

En un contexto social y reglamentario cada vez más exigente, coexisten tres tendencias que se presentan como una inmejorable oportunidad para la consolidación definitiva de las soluciones prefabricadas de hormigón como la variante industrializada de la construcción de edificios e infraestructuras, con todas las ventajas que ello proporciona en términos de rapidez de ejecución, control más exhaustivo en proyecto y obra, calidad, precisión dimensional, eficiencia y rentabilidad económica. Tanto BIM, como las declaraciones ambientales de producto y la inercia térmica, son tres aspectos que guardan una correlación.

Referencia:

López-Vidal, A.; Yepes, V. (2017). BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón. VII Congreso de ACHE, A Coruña, junio de 2017, 9 pp.

Descargar (PDF, 591KB)

23 junio, 2017
 

Publicada By  Víctor Yepes Piqueras - hormigón, maquinaria, prefabricación    

Bancada de tesado 1

Vista del extremo de bancada de tesado. Cortesía: ANDECE.

Los elementos de hormigón pretensado son productos habituales de las plantas de prefabricados. Para poder realizar el tesado de las armaduras activas, se utilizan bancadas de tesado. Estos elementos permiten anclar los cables en los extremos de la pista, donde se encuentra una solera de hormigón que servirá de base al molde. Estas bancadas suelen ser largas, de 100 a 150 m, pues a mayor distancia entre los elementos de anclaje, mayor economía, siempre y cuando no se contrarreste el momento flector a que se le somete.

Las bancadas son estructuras metálicas realizadas con chapas de resistencia suficiente para soportar la tracción de las armaduras. Además, presentan unas cimentaciones muy grandes capaces de estabilizar las fuerzas de pretensado que se apliquen. En otras ocasiones, el propio molde presenta los elementos de anclaje en sus extremos, sirviendo la bancada como fondo de molde. En este caso el molde es autorresistente y se puede mover a otro lugar de la planta.

Extremo de la bancada de tesado. Cortesía: ANDECE.

Extremo de la bancada de tesado. Cortesía: ANDECE.

Se pueden fabricar distintos tipos de piezas en una misma bancada, siempre que no se sobrepase el límite de la fuerza de pretensado capaz de soportar la bancada. La cantidad de cables colocados definirá la magnitud de la fuerza de pretensado aplicada.

Para comprobar que la relación fuerza de pretensado/altura de actuación de los cables se mantiene dentro de los márgenes de seguridad exigibles, las bancadas disponen de una placa visible con un gráfico donde se establecer los valores máximos. A mayor altura de la resultante de la acción de los cables, menor será la fuerza total admisible.

Extendedora del cable de pretensado en la bancada. Fuente: www.resimart.com

Extendedora del cable de pretensado en la bancada. Fuente: www.resimart.com

Los moldes se comercializan y las bancadas se dimensionan para una fuerza máxima nominal determinada. Esto se corresponde con la fuerza y excentricidad de cables correspondientes al canto máximo que se pueda fabricar. Si la excentricidad es menor, se podría aplicar una fuerza de pretensado superior a la nominal.

A continuación os dejo algunos vídeos donde podemos ver cómo son algunas instalaciones de prefabricados. En este primer vídeo podemos ver cómo se fabrican viguetas pretensadas Tensyland (Prensoland).

Aquí vemos el mismo proceso de fabricación de viguetas, en este caso de la empresa VELOSA.

En este otro vídeo también vemos el proceso de fabricación de viguetas de hormigón pretensado.

19 junio, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, prefabricación, Puentes    

VigasOs paso a continuación un vídeo que muestra la construcción rápida de un puente mediante elementos prefabricados, incluidas las pilas. Se trata de un puente en Lagrange, Georgia. Espero que os guste.

 

15 junio, 2017
 
|   Etiquetas: ,  ,  |  

Página siguiente »

Universidad Politécnica de Valencia