UPV



prefabricación


Publicada By  Víctor Yepes Piqueras - algoritmo, costes, estructuras, hormigón, investigación, optimización, prefabricación, Puentes    

Acaban de publicarnos un artículo donde se utilizan cuatro algoritmos heurísticos: Descent Local Search, Threshold Accepting Algorithm with Mutation Operation, Genetic Algorithm y Memetic Algorithm para el diseño automático de puentes pretensados.

Se puede descargar gratuitamente este artículo hasta el 10 de junio de 2017 en el siguiente enlace: https://authors.elsevier.com/a/1UwC15s1QSxbmc

Referencia: 

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006

Abstract:

This paper deals with the cost optimization of road bridges consisting of concrete slabs prepared in situ and two precast-prestressed U-shaped beams of self-compacting concrete. It shows the efficiency of four heuristic algorithms applied to a problem of 59 discrete variables. The four algorithms are the Descent Local Search (DLS), a threshold accepting algorithm with mutation operation (TAMO), the Genetic Algorithm (GA), and the Memetic Algorithm (MA). The heuristic optimization algorithms are applied to a bridge with a span length of 35 m and a width of 12 m. A performance analysis is run for the different heuristics, based on a study of Pareto optimal solutions between execution time and efficiency. The best results were obtained with TAMO for a minimum cost of 104184 euros. Among the key findings of the study, the practical use of these heuristics in real cases stands out. Furthermore, the knowledge gained from the investigation of the algorithms allows a range of values for the design optimization of such structures and pre-dimensioning of the variables to be recommended.

Keywords:

Optimization; Metaheuristics; Bridges; Overpasses; Structural design

 

Publicada By  Víctor Yepes Piqueras - hormigón, prefabricación    

Moldes para hormigón prefabricado. Cortesía: ANDECE

Moldes para hormigón prefabricado. Cortesía: ANDECE

El molde es el elemento que contiene al hormigón fresco, respondiendo su diseño a las exigencias de las piezas que se van a prefabricar. Se exige que los moldes presenten la máxima calidad posible para garantizar la precisión dimensional, la estabilidad, la versatilidad para adaptarse a otras formas, que sean fáciles de usar y durables. Por tanto, los moldes deben mantener su integridad durante el vertido del hormigón y en la aplicación del pretensado, si lo hubiese.

Los moldes deben reutilizarse el máximo número de veces posible, sin que ello suponga una merma en la calidad, por la repercusión económica que presenta en el producto final. La reutilización se puede realizar con piezas diferentes, aunque es deseable que se mantenga la tipología, cambiando en este caso sólo la longitud o la altura con pequeñas modificaciones. Suelen disponerse en horizontal y de forma continua, aunque también es posible disponerlos en algunos casos en vertical (en batería).

Los moldes suelen ser de acero, pues permite alargar el número de usos y adaptarse a la geometría necesaria. Estos moldes son fáciles de transportar y reubicar dentro de la planta. De hecho, los moldes suelen llenar las plantas de fabricación y a veces es un verdadero problema ubicarlos para facilitar las maniobras y el resto de actividades sin que molesten. El problema que pueden presentar es la corrosión del acero, que puede atenuarse con aditivos inhibidores de la corrosión y con un buen agente desencofrante.

Con todo, también existen moldes de otros materiales como el polietileno expandido, que son desechables. Este material es ligero, barato y permite ahorros de tiempo, aunque su uso está muy centrado en piezas ornamentales. También es cierto que este tipo de materiales, junto con otros como el poliéster o la fibra de vidrio, permite reducir la disipación del calor interno durante el fraguado, lo que permite acelerar el proceso de curado.

Por tanto, una forma de acelerar el curado es usar moldes de acero calefactados. En ellos se permite un aporte de energía que garantice una temperatura fija o una curva de temperatura de curado adecuada a la reacción química interna del hormigón. Los moldes de acero también pueden ser “autorresistentes” en el caso de piezas pretensadas, donde el propio molde puede contener los elementos de anclaje de las armaduras activas, sirviendo de bancada de pretensado.

También los moldes pueden disponer de un sistema de vibradores laterales o internos, de forma que se permita eliminar las burbujas de aire y mejorara la distribución de los áridos. Sin embargo, estos vibradores no se utilizan en el caso de emplear hormigón autocompactante. Además, como puede verse en la figura inferior, los moldes suelen presentar unas plataformas y accesos laterales para facilitar el acceso seguro de los operarios.

Molde prefabricado 2

Apertura de caras laterales antes de retirar la viga prefabricada. Escaleras de acceso a la plataforma lateral para el control del proceso. Cortesía: ANDECE.

Con el uso repetido de los moldes, éstos se deforman, pierden sección y cogen holguras en sus fijaciones. Todo ello perjudica la calidad de las piezas, por lo que resulta de gran importancia disponer de un buen plan de control y mantenimiento de estos moldes. De todas las operaciones, hay que cuidar la limpieza tras el uso. En el caso de elementos de gran longitud, hay que cuidar la alineación del conjunto del molde y su inmovilización para mantener la pieza dentro de las tolerancias exigidas.

En el siguiente vídeo, de Vifesa Fabricados Industriales, podemos ver moldes modulares para el prefabricado de marcos de hormigón de distintos tamaños.

13 Abril, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, medios auxiliares, prefabricación, Puentes    

Puente Long Key, Layton, Florida (1982). Fuente: http://www.figgbridge.com/long_key_bridge.html

Puente Long Key, Layton, Florida (1982). Fuente: http://www.figgbridge.com/long_key_bridge.html

La potencia de los actuales medios auxiliares permite la construcción prefabricada de puentes vano a vano, que puede ser mediante dovelas previamente ensambladas o bien de un vano completo prefabricado. La construcción del vano mediante dovelas prefabricadas supone ensamblar dichas dovelas sobre una cimbra auxiliar que se apoya sobre las pilas del vano, realizando posteriormente la transferencia del tramo del tablero formado con el resto de la estructura. En cambio, la construcción de un vano completo normalmente se realiza en tramos metálicos o mixtos (la losa se realiza en una segunda fase), estando condicionada la operación por la capacidad de los medios de elevación.

El puente Long Key, en Florida (Muller, 1980), se construyó mediante dovelas prefabricadas. En este caso se dispuso una viga metálica triangulada entre las pilas que actuaba como cimbra y sobre ella se colocaban una a una las dovelas mediante grúa. Posteriormente se unían las dovelas mediante el pretensado, apoyándose el vano sobre las pilas y descargando la cimbra. En el caso del puente de Seven Mile (Florida, 1978), las dovelas se ensamblaron sobre una pontona flotante, izándose posteriormente.

La otra opción es el montaje del vano de una sola pieza. Esta posibilidad sólo sería rentable en el caso de una repetición elevada en el número de vanos, pues los medios auxiliares de elevación son muy costosos. En tramos de hormigón, esta forma de construir deriva de la evolución de los tableros de vigas artesa, dejando la incorporación de la losa superior en una segunda fase, de igual forma que en las estructuras mixtas. Un ejemplo de construcción con vigas por vanos completos es el viaducto en el enlace A3-M45 de Madrid (Álvarez et al., 2008), donde las vigas se montan por vanos completos, con un peso máximo de 170 t para una luz máxima de 41,6 m. Se trata en este caso de vigas artes que trabajan como isostáticas de forma provisional hasta que se da más adelante un pretensado de continuidad. Posteriormente se colocan las prelosas pretensadas colaborantes.

A3-M45 1

Vista con cuatro vigas montadas en el viaducto del enlace A3-M45 de Madrid (Álvarez et al., 2008)

Montaje de prelosas sobre jabalcones provisionales (Álvarez et al., 2008)

Montaje de prelosas sobre jabalcones provisionales (Álvarez et al., 2008)

A continuación os dejo un vídeo donde se ve el montaje del tramo completo de una viga artesa.

En este otro vídeo se puede ver un lanzavigas, ampliándose la longitud del vano por medio de vigas partillo en las pilas.

Referencias:

Álvarez, J.J.; Lorente, G.; Ortega, M.; Matute, L. (2008). Viaducto en el enlace A3-M45 (Madrid). IV Congreso de la Asociación Científico-Técnica del Hormigón Estructura-Congreso Internacional de Estructuras, 24-27 de noviembre.

Muller, J. (1980). Construction of Long Key Bridge. Journal – Prestressed Concrete Institute, 25(6), 97-111.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

14 Febrero, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, costes, estructuras, hormigón, investigación, prefabricación, Puentes, sostenibilidad    

http://www.tierra-armada.com/

http://www.tierra-armada.com/

Recientemente hemos publicado un artículo donde hemos empleado un algoritmo evolutivo híbrido para optimizar tanto el coste como las emisiones de CO2 de puentes en viga artesa, con la particularidad de usar hormigones con fibras de acero. Se trata de un problema combinatorio complejo, con 41 variables de diseño, que se aplicó a un puente de 30 m de luz y una anchura de calzada de 12 m. Os dejo a continuación el artículo completo.

Abstract: 

In this paper, the influence of steel fiber-reinforcement when designing precast-prestressed concrete (PPC) road bridges with a double U-shape cross-section is studied through heuristic optimization. A hybrid evolutionary algorithm (EA) combining a genetic algorithm (GA) with variable-depth neighborhood search (VDNS) is formulated to minimize the economic cost and CO2 emissions, while imposing constraints on all the relevant limit states. The case study proposed is a 30-m span-length with a deck width of 12 m. The problem involved 41 discrete design variables. The algorithm requires the initial calibration. Moreover, the heuristic is run nine times so as to obtain statistical information about the minimum, average and deviation of the results. The evolution of the objective function during the optimization procedure is highlighted. Findings show that heuristic optimization is a forthcoming option for the design of real-life prestressed structures. This paper provides useful knowledge that could offer a better understanding of the steel fiber-reinforcement in U-beam road bridges.

Keywords: hybrid evolutionary algorithm, precast-prestressed concrete, steel fiber-reinforcement, U-shape cross-section.

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2017). Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm. International Journal of Computational Methods and Experimental Measurements, 5(2):179-189.

Descargar (PDF, 199KB)

Publicada By  Víctor Yepes Piqueras - ANDECE, estructuras, hormigón, prefabricación, Puentes    

pretil-con-imposta-curva-prevalesaDesde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados, la tecnología ha experimentado un avance imparable. Sin embargo, existen importantes retos de futuro que pasan, sin duda, por la sostenibilidad y por las tecnologías BIM. En relación con lo primero, la generalización de las declaraciones ambientales de producto servirá, sin duda, para valorar con mayor criterio la conveniencia de unas soluciones constructivas frente a otras, sin olvidar los aspectos sociales y económicos. Por otra parte, las tecnologías BIM impondrán un mayor rigor y definición en el proyecto, que sin duda, favorecerán los procesos de industrialización y prefabricación. En este sentido iniciativas como la creación de bibliotecas de elementos prefabricados modelados en BIM favorecerá claramente su uso. Os dejo a continuación un artículo de Alejandro López Vidal, gerente técnico de la ANDECE, que espero os sea de interés.

Descargar (PDF, 1.88MB)

 

22 Noviembre, 2016
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - ANDECE, cemento, ciclo de vida, competitividad, economía, hormigón, prefabricación, sostenibilidad    

http://www.ambientum.com/

http://www.ambientum.com/

La economía circular es una estrategia que tiene por objeto reducir tanto la entrada de los materiales como la producción de desechos vírgenes, cerrando los «bucles» o flujos económicos y ecológicos de los recursos.  Actualmente es la principal estrategia de Europa para generar crecimiento y empleo, con el respaldo del Parlamento Europeo y el Consejo Europeo. De hecho, la Comisión Europea, como órgano colegiado, ha adoptado la eficiencia de los recursos como un pilar central de su estrategia económica estructural Europa 2020».

Os dejo un pequeño vídeo sobre la fabricación del cemento y economía circular de la Fundación Cema.

A continuación os dejo un artículo de Alejandro  López Vidal sobre este concepto aplicado a los prefabricados de hormigón. El autor es actualmente el director técnico de la Asociación Nacional de la Industria del Prefabricado de Hormigón (ANDECE). En artículo se publicó recientemente en la Revista Técnica CEMENTO HORMIGÓN, nº 976 (2016) sobre la economía circular en los prefabricados de hormigón, en línea con el uso más eficiente de los recursos auspiciada por la Comisión Europea.

Descargar (PDF, 527KB)

12 Noviembre, 2016
 

Publicada By  Víctor Yepes Piqueras - estructuras, prefabricación, Puentes    

Gruas Rigar

La prefabricación en elementos de puentes comenzó en España a principios de los años 50, con los primeros tableros de vigas prefabricadas pretensadas. Hoy día existen soluciones prefabricadas para casi todas las tipologías de puentes de hormigón, aunque habitualmente sólo se prefabrica el tablero.

Siguiendo con los posts relacionados con el montaje de puentes prefabricados, os dejo a continuación un vídeo de Grúas Rigar donde se puede ver el montaje de un puente en la carretera Betxí-Borriol. Resulta interesante ver el grado de precisión y maestría necesario para encajar las grandes piezas. Espero que os guste.

10 Noviembre, 2016
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - ANDECE, estructuras, prefabricación, seguridad    

http://gbprefabricados.placasalveolares.com/

Los prefabricados de hormigón contemplan una gran cantidad de productos que van desde los elementos estructurales como pilares, vigas, etc., hasta los elementos más decorativos. Su uso ha crecido en los últimos años acompañado de una mayor especialización de los fabricantes que permite resolver casi cualquier dificultad técnica.

Las piezas se fabrican en taller a partir de los despieces que el propio proyecto de ejecución marca. Posteriormente son trasladados a obra, pudiéndose necesitar transportes especiales. Finalmente se montan en obra, unas veces desde el propio transporte y otras acopiándose primero.

www.construmatica.com

Los riesgos y medidas de seguridad en este tipo de trabajos se relacionan con el manejo de cargas, trabajos en altura, etc. Os recomiendo para mayor detalle el documento llevado a cabo por ANDECE, que es un extracto de la monografía desarrollada en el grupo GT de Seguridad de ACHE (Asociación Científico Técnica del Hormigón Estructural), y cuyo título es“Recomendaciones relativas a Seguridad y Salud para la ejecución de estructuras de hormigón. – Puentes y Estructuras de Edificación Convencional”

También os podéis descargar un documento de ANDECE, más actual sobre buenas prácticas preventivas: http://www.andece.org/images/BIBLIOTECA/buenas_practicas_preventivas_PH.pdf

Además, os dejo el siguiente vídeo explicativo sobre este tema.

14 Octubre, 2016
 

Publicada By  Víctor Yepes Piqueras - arco, estructuras, prefabricación, procedimientos de construcción, Puentes    

puente-prefabricado-hormigon-armado-59280-3586967En un post reciente del blog Fieras de la Ingeniería, tuvimos ocasión de ver un sistema ingenioso de construcción de arcos flexibles de hormigón prefabricado. Este sistema, denominado FlexiArch, fue desarrollado por los ingenieros de la Escuela de Ingeniería Civil de la Universidad de Belfast. Se trata de unos arcos flexibles de hormigón prefabricado que permite agilizar enormemente las labores de construcción de puentes en arco, de modo sencillo y rápido. El concepto fue patentado en la década del 2000, y gracias a la colaboración con Macrete Ireland, pudo finalmente llevarse a la realidad por primera vez en septiembre de 2007 durante la construcción de un puente cerca de Belfast.

Os dejo un par de vídeos explicativos de la técnica. Espero que os gusten.

3 Octubre, 2016
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, estructuras, hormigón, optimización, prefabricación, Puentes    

camion grande_tcm17-2842

Nos han publicado un artículo científico en la prestigiosa revista Journal of Structural Engineering, del ASCE (American Society of Civil Engineers). Esta investigación se enmarca dentro del proyecto HORSOST que está desarrollando nuestro equipo de investigación, y he pensado que puede ser de interés comentarla brevemente en el blog.

En este trabajo se describe la influencia de las fibras de acero en el diseño de coste mínimo de puentes de carretera de vigas prefabricadas con sección transversal en doble U pretensadas y vanos isostáticos. Para ello se utiliza un algoritmo memético con una búsqueda en entornos variable (MA-VDNS) para optimizar el coste de estas estructuras contando las fases de fabricación, transporte y construcción del puente. El problema implica 41 variables de diseño discretas que definen la geometría de la viga y de la losa, los materiales en ambos elementos, las armaduras pasiva y activa y la resistencia residual a tracción de las fibras. El uso de las fibras disminuye el peso medio de la viga en un 1,72% y reduce el número medio de tendones en un 3,59%; sin embargo, incrementa un 8,71% de media la armadura pasiva necesaria. Por último, y a pesar del mayor coste del hormigón con fibras, se comprueba que su uso es económicamente viable, pues se consigue una diferencia relativa media de coste respecto al hormigón sin fibras, inferior al 0,19%.

Figure 1

Resultados interesantes:

  • A pesar del mayor coste económico del hormigón con fibras y de que el estado de decompresión del hormigón no ocurre en ninguna fibra de la sección de la viga por el pretensado, el hormigón con fibras es competitivo económicamente respecto al no uso de fibras, puesto que la diferencia relativa es inferior al 5,36% en el peor de los casos.
  • El estudio paramétrico realizado indica una buena correlación del coste, canto y peso de la viga y número de tendones respecto a la luz del puente. Esto permite un predimensionamiento ajustado.
  • Se ha comprobado que las fibras reducen de media un 3,59% el número de tendones necesarios, lo cual significa que su uso puede compensar parte del pretensado necesario.
  • Sorprende comprobar que el uso de fibras incrementa de media un 8,71% la armadura necesaria por unidad de superficie de losa. Esto se puede explicar debido a que la carestía del hormigón con fibras hace que el algoritmo intente disminuir su volumen, lo cual se compensa con el incremento de armadura pasiva.
  • En el caso de las estructuras óptimas, se ha encontrado una reducción del 6% del peso de las vigas realizadas con fibras, lo cual puede ser relevante para el transporte e izado de los elementos.

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). A memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 , 04014114.

Abstract

This paper describes the influence of steel fiber-reinforcement on the design of cost-optimized, prestressed concrete, precast road bridges, with a double U-shaped cross-section and isostatic spans. A memetic algorithm with variable-depth neighborhood search (MA-VDNS) is applied to the economic cost of these structures at different stages of manufacturing, transportation and construction. The problem involved 41 discrete design variables for the geometry of the beam and the slab, materials in the two elements, active and passive reinforcement, as well as residual flexural tensile strength corresponding to the fibers. The use of fibers decreases the mean weight of the beam by 1.72%, reduces the number of strands an average of 3.59%, but it increases the passive reinforcement by 8.71% on average, respectively. Finally, despite the higher cost of the fibers, their use is economically feasible since the average relative difference in cost is less than 0.19%.

Keywords: Heuristic optimization; precast beam; prestressed concrete bridge; steel fiber; structural design.

Link: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0001058

5 Septiembre, 2016
 

Página siguiente »

Universidad Politécnica de Valencia