UPV



ordenadores


Publicada By  Víctor Yepes Piqueras - Docencia, estructuras, hormigón, ingeniería civil, innovación, investigación, modelo matemático, optimización, ordenadores, sostenibilidad, toma de decisiones, universidad    

El programa de la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón se ha diseñado basándose en el programa presentado en el departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil por parte de la unidad docente de “Procedimientos de Construcción y Gestión de Obras”, al que está adscrita en la actualidad la asignatura, y aprobado por el Consejo del Departamento. Las líneas maestras de los contenidos se definieron previamente en la Memoria de Verificación del título oficial de “Máster Universitario en Ingeniería del Hormigón por la Universitat Politècnica de València”. Se trata de una de las asignaturas de la materia “Análisis de estructuras de hormigón”, siendo obligatoria para todos los alumnos de esta titulación y se imparte en el primer cuatrimestre del primer curso. La asignación de créditos ECTS es de 5,0, repartidos en 3,0 créditos de teoría y 2,0 de prácticas, de acuerdo con el Plan de Estudios actualmente en vigor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil.

Resultados de aprendizaje

Los resultados de aprendizaje de la asignatura se definen a partir de las competencias y de los contenidos (Yepes, 2017). Como resultado de aprendizaje general, al terminar con éxito esta asignatura, los estudiantes serán capaces de “comprender los diferentes métodos predictivos y procedimientos de optimización de estructuras de hormigón de modo que dispongan de las herramientas necesarias para la toma de decisiones en el ámbito del proyecto, construcción y mantenimiento de estas estructuras considerando los aspectos de sostenibilidad económica, social y ambiental”.

En relación con los resultados específicos de aprendizaje de la asignatura, tenemos los siguientes:

  • RA1    Seleccionar y aplicar las distintas técnicas procedentes de la estadística, de la investigación operativa y de la minería de datos en la toma de decisiones en el ámbito del hormigón
  • RA2    Modelizar un problema de optimización de una estructura de hormigón y resolverlo mediante algoritmos heurísticos secuenciales y poblacionales
  • RA3    Aplicar la inferencia estadística multidimensional para interpretar el comportamiento de las variables cualitativas y cuantitativas en el ámbito del hormigón
  • RA4    Formular modelos lineales de regresión múltiple e interpretar su validez límites predictivos
  • RA5    Emplear técnicas de diseño de experimentos para conocer los efectos principales y las interacciones entre los distintos factores que afectan a una variable de respuesta en el ámbito del hormigón
  • RA6    Optimizar el comportamiento de una estructura de hormigón utilizando la metodología de la superficie de respuesta
  • RA7    Aplicar redes neuronales artificiales en la predicción de sistemas altamente no lineales en el ámbito del hormigón
  • RA8    Aplicar técnicas de decisión multicriterio en la selección de la mejor tipología estructural considerando aspectos económicos, ambientales y sociales
  • RA9    Elegir la mejor opción de una frontera de Pareto tras aplicar técnicas de decisión multicriterio
  • RA10 Aplicar programas estadísticos avanzados, tales como SPSS o Minitab, y otros como Matlab, Sap y Excel en la predicción de variables de respuesta y en problemas de optimización en el ámbito del hormigón

 

Conocimientos previos

Los alumnos que cursan esta asignatura, tienen diversas procedencias: Ingeniería de Caminos, Canales y Puertos, Ingeniería Industrial, Arquitectura, Ingeniería Agronómica, Licenciado en Químicas, Ingeniería Geológica, Ingeniería Técnica de Obras Públicas, Ingeniería Técnica Industrial, o los actuales grados en ingeniería civil, de obras públicas o máster en ingeniería de caminos, canales y puertos, entre otros. Además los alumnos, en un porcentaje significativo, proceden de universidades latinoamericanas o europeas. Como es fácil de comprender, los alumnos tienen formaciones muy diferentes, habiendo estudiado las asignaturas relacionadas con el hormigón, con los métodos numéricos o la estadística de forma muy diversa, con niveles de adquisición de conocimientos descompensados. Esta situación implica cierta nivelación en cada uno de los temas, de forma que se adquieran los niveles básicos de comprensión de los contenidos de forma progresiva con el objetivo que todos los alumnos adquieran las competencias y los resultados de aprendizaje previstos.

Según la Guía Docente de la asignatura, los conocimientos recomendados versarían sobre estadística y sobre lenguajes de programación (MATLAB, SPSS, MINITAB, SAP, etc.), aunque no son imprescindibles.  Además, resultan necesarios unos conocimientos básicos sobre el hormigón y su análisis como material estructural. Ello obliga al profesor a sintetizar el contenido previo para la correcta comprensión de la asignatura.

 

Programa resumido de la asignatura

La asignatura se desarrolla siguiendo un programa que tiene en cuenta los resultados de aprendizaje antes definidos, las actividades formativas y el sistema propuesto para la evaluación. Ello permite organizar la asignatura en 25 temas y sus prácticas de informática asociadas.

  • Tema 1. La investigación operativa y la toma de decisiones
  • Tema 2. La modelización de un problema estructural de hormigón
  • Tema 3. Algoritmos y problemas de decisión
  • Tema 4. Optimización y programación matemática
  • Tema 5. Optimización combinatoria y algoritmos heurísticos
  • Tema 6. Clasificación y uso de heurísticas y metaheurísticas
  • Tema 7. Búsqueda local de máximo gradiente
  • Tema 8. Recocido simulado, aceptación por umbrales y búsqueda tabú
  • Tema 9. Sistemas de inteligencia de enjambre
  • Tema 10. Programación evolutiva y estrategias evolutivas
  • Tema 11. Algoritmos genéticos y meméticos
  • Tema 12. GRASP, búsqueda dispersa y búsqueda de la armonía
  • Tema 13. Heurísticas de optimización multiobjetivo
  • Tema 14. Inferencia estadística bidimensional
  • Tema 15. Inferencia estadística multidimensional
  • Tema 16. Modelos lineales de regresión múltiple
  • Tema 17. Modelos de ecuaciones estructurales
  • Tema 18. Diseño de experimentos
  • Tema 19. Optimización mediante la metodología de superficie de respuesta
  • Tema 20. Modelos Kriging y diseños robustos
  • Tema 21. Redes neuronales artificiales
  • Tema 22. Programación genética y lógica difusa
  • Tema 23. La toma de decisiones en el ciclo de vida de una estructura de hormigón
  • Tema 24. Técnicas de decisión multicriterio continua
  • Tema 25. Técnicas de decisión multicriterio discreta

 

 

Los 25 temas se encuentran agrupados en 4 bloques temáticos. El primero de los bloques es introductorio. Consta de 5 temas que presentan al alumno la aplicación de las técnicas de la investigación científica en el ámbito de la toma de decisiones en las empresas a través de lo que se conoce como investigación operativa. Se introduce al alumno en la forma de abordar los problemas reales en el ámbito de las estructuras de hormigón a través de modelos de distinto tipo. Se describen los componentes básicos de un problema de optimización: función objetivo, variables de decisión, parámetros y restricciones. A continuación se describe el concepto de algoritmo y complejidad algorítmica para explicar las limitaciones de la programación matemática en la resolución de problemas reales, lo cual da paso a la introducción de los algoritmos heurísticos como aproximaciones en la búsqueda de óptimos locales de calidad en tiempos de cálculo razonables.

El segundo de los bloques se centra en la descripción y aplicación de la optimización heurística en las estructuras de hormigón. Se describe paso a paso tanto las técnicas de búsqueda secuencial de máximo gradiente y de “hill-climbing” como otras técnicas poblacionales basadas en los algoritmos genéticos o en la inteligencia de partículas. Este bloque termina con una explicación de la optimización multiobjetivo y la construcción de fronteras de Pareto de calidad en el caso de confluencia de funciones objetivo contrapuestas.

El bloque tercero se centra específicamente en los modelos predictivos de las estructuras de hormigón. Se hace un repaso de las técnicas de inferencia bidimensional y multidimensional para pasar a los modelos predictivos lineales, tanto los basados en regresiones múltiples como en los modelos de ecuaciones estructurales. Posteriormente se aborda el diseño de experimentos como técnicas estadísticas básicas en la predicción de los efectos principales y las interacciones de los distintos factores que afectan a un problema de hormigón. El estudio de los diseños factoriales lleva directamente al planteamiento de la metodología de la superficie de respuesta, que permite realizar la optimización de la respuesta. Tanto la metodología de la superficie de respuesta como los modelos Kriging o las redes neuronales, constituyen metamodelos que se explican como herramientas muy útiles para simplificar el espacio de soluciones de los problemas reales del hormigón estructural. En particular, los modelos Kriging permiten el diseño robusto óptimo, es decir, aquel que se comporta bien incluso ante cambios en las variables o en las condiciones de contorno. Para los sistemas altamente complejos, se explican las redes neuronales artificiales que, además, permiten su uso como metamodelos o como parte de un algoritmo heurístico de optimización. La programación genética y la lógica difusa también se explican en una lección como herramientas posibles en el ámbito de los modelos predictivos y cuando los parámetros o restricciones del problema no son determinísticos.

El cuarto bloque se dedica a la toma de decisión multicriterio en las estructuras de hormigón. A los alumnos se les explica cómo, antes de realizar una optimización multiobjetivo, es necesario seleccionar la mejor tipología estructural con base en criterios que no siempre son objetivos: economía, plazo, estética, medioambiente, aspectos sociales, durabilidad, etc. Se introducen las distintas técnicas de toma de decisión multicriterio y se comentan su empleo, incluso, para la obtención de pesos objetivos de criterios que pueden ser incluso subjetivo, o bien para la selección de la mejor opción dentro de una frontera de Pareto tras una optimización multiobjetivo.

En la Tabla siguiente se muestra el programa resumido de la asignatura “Modelos Predictivos y de Optimización de Estructuras de Hormigón” (T, Teoría; P, Prácticas informáticas), indicándose el número de horas asignadas a cada tema.

Referencias:

YEPES, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Publicada By  Víctor Yepes Piqueras - algoritmo, estructuras, hormigón, logística, modelo matemático, optimización, ordenadores, Polimedia, transporte    

En algunos posts anteriores hemos comentado lo que es un modelo matemático de optimización, qué son las metaheurísticas, o cómo poder optimizar las estructuras de hormigón. A continuación os presentamos un Polimedia donde se explica brevemente cómo podemos optimizar siguiendo la técnica de optimización heurística mediante aceptación por umbrales. Podréis comprobar cómo se trata de un caso similar a la famosa técnica de la cristalización simulada. Espero que os sea útil. (En el caso de que no funcione el vídeo, el enlace es el siguiente: https://www.youtube.com/watch?v=ha5fiRsVPZM)

Podéis consultar, a modo de ejemplo, algunos artículos científicos que hemos escrito a ese respecto en las siguientes publicaciones:

  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • YEPES, V.; MEDINA, J.R. (2006). Economic Heuristic Optimization for Heterogeneous Fleet VRPHESTW. Journal of Transportation Engineering, ASCE, 132(4): 303-311. (link)

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

16 noviembre, 2017
 

Publicada By  Víctor Yepes Piqueras - algoritmo, Docencia, investigación operativa, optimización, ordenadores, Polimedia, programación    

La cristalización simulada (también llamado recocido simulado)  “Simulated Annealing, SA” constituye una de las estrategias a las que se recurre en la resolución de los problemas de optimización combinatoria. Kirkpatrick, Gelatt y Vecchi la propusieron por primera vez en 1983 y Cerny en 1985 de forma independiente. Estos autores se inspiraron en los trabajos sobre Mecánica Estadística de Metrópolis et al. (1953). La metaheurística despliega una estructura que se inserta cómodamente en la programación, mostrando además una considerable habilidad para escapar de los óptimos locales. Fue una técnica que experimentó un auge considerable en la década de los 80 para resolver los modelos matemáticos de optimización.

La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución admisible de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. Conceptualmente es un algoritmo de búsqueda por entornos, que selecciona candidatos de forma aleatoria. La alternativa se aprueba si perfecciona la solución actual (D menor o igual que cero); en caso contrario, será aceptada con una probabilidad  (e(-D/T) si D>0, donde T es el parámetro temperatura) decreciente con el aumento de la diferencia entre los costes de la solución candidata y la actual. El proceso se repite cuando la propuesta no es admitida. La selección aleatoria de soluciones degradadas permite eludir los mínimos locales. La cristalización simulada se codifica fácilmente, incluso en problemas complejos y con funciones objetivo arbitrarias. Además, con independencia de la solución inicial, el algoritmo converge estadísticamente a la solución óptima (Lundy y Mees, 1986). En cualquier caso, SA proporciona generalmente soluciones valiosas, aunque no informa si ha llegado al óptimo absoluto. Por contra, al ser un procedimiento general, en ocasiones no resulta competitivo, aunque sí comparable, ante otros específicos que aprovechan información adicional del problema. El algoritmo es lento, especialmente si la función objetivo es costosa en su tiempo de computación. Además, la cristalización simulada pierde terreno frente a otros métodos más simples y rápidos como el descenso local cuando el espacio de las soluciones es poco abrupto o escasean los mínimos locales.

Os dejo un vídeo explicativo: https://www.youtube.com/watch?v=wtw_B_3lrjE

Referencias

CERNY, V. (1985). Thermodynamical approach to the traveling salesman problem: an efficient simulated algorithm. Journal of Optimization Theory and Applications, 45: 41-51.

KIRKPATRICHK, S.; GELATT, C.D.; VECCHI, M.P. (1983). Optimization by simulated annealing. Science, 220(4598): 671-680.

LUNDY, M.; MEES, A. (1986). Convergence of an Annealing Algorithm. Mathematical programming, 34:111-124.

METROPOLIS, N.; ROSENBLUTH, A.W.; ROSENBLUTH, M.N.; TELLER, A.H.; TELER, E. (1953). Equation of State Calculation by Fast Computing Machines. Journal of Chemical Physics, 21:1087-1092.

GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)

Publicada By  Víctor Yepes Piqueras - algoritmo, costes, Docencia, estructuras, hormigón, ingeniería civil, investigación, modelo matemático, optimización, ordenadores, Polimedia, programación    

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejos algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)
26 julio, 2017
 

Publicada By  Víctor Yepes Piqueras - algoritmo, estructuras, hormigón, ingeniería civil, investigación, optimización, ordenadores    

A veces la Naturaleza nos sorprende cada día más. ¿Es posible que el comportamiento de las hormigas pueda servirnos para optimizar estructuras complejas, como por ejemplo un puente? Pues vamos a ver que sí. Este post es continuación de otros anteriores donde hablamos de la posibilidad de optimizar estructuras de hormigón. La optimización por colonia de hormigas (ant colony optimization) va a ser una metaheurística que nos va a permitir realizar este tipo de operaciones. A continuación vamos a contar los fundamentos básicos y en las referencias os dejo, incluso, algunos artículos donde hemos podido utilizar esta técnica de forma exitosa.

Colorni, Dorigo y Maniezzo (1991) sugirieron la idea de imitar el comportamiento de los insectos para encontrar soluciones a los problemas de optimización combinatoria. El principio de la metaheurística denominada como “Ant System Optimization, ACO” se basa en el comportamiento colectivo de las hormigas en la búsqueda de alimentos para su subsistencia, que son capaces de encontrar el camino más corto entre una fuente de comida y su hormiguero. Primero las hormigas exploran el entorno de su hormiguero de forma aleatoria. Tan pronto como un individuo encuentra una fuente de comida, evalúa su cantidad y calidad y transporta un poco al hormiguero. Durante el regreso, la hormiga deja por el camino una señal odorífera, depositando una sustancia denominada feromona, para que las demás puedan seguirla. Después de un tiempo, el camino hacia el alimento se indicará por un rastro oloroso que crece con el número de hormigas que pasen por él, y que va desapareciendo en caso contrario. El resultado final es la optimización del trabajo de todo el hormiguero en su búsqueda de comida. (más…)

15 agosto, 2016
 

Publicada By  Víctor Yepes Piqueras - algoritmo, costes, economía, estructuras, hormigón, investigación, modelo matemático, optimización, ordenadores, Puentes, toma de decisiones    

¿Cuándo empieza realmente la optimización de las estructuras? Difícil pregunta a resolver. Si bien los aspectos básicos relacionados con la optimización matemática se establecieron en los siglos XVIII y XIX con los trabajos de Lagrange o Euler, hay que esperar hasta los años 40 del siglo XX para que Kantorovich y Dantzing desarrollaran definitivamente los principios de la programación matemática.  Es a partir de la revolución informática de los años 70 cuando estas herramientas empiezan a ser empleadas habitualmente en numerosas aplicaciones en las ciencias, las ingenierías y los negocios. Sin embargo, el progreso de técnicas de optimización que no requieran derivadas y que se generen a través de reglas heurísticas, ha supuesto una auténtica revolución en el campo de la optimización de los problemas reales. En efecto, los métodos aproximados pueden utilizarse allí donde el elevado número de variables en juego impiden la resolución en un tiempo de cálculo razonable de los problemas mediante la programación matemática. A estos algoritmos de optimización aproximada, cuando su uso no está restringido a un solo tipo de problemas, la comunidad científica en el ámbito de la inteligencia artificial y la investigación operativa les ha dado el nombre de metaheurísticas. Este grupo incluye una amplia variedad de procedimientos inspirados en algunos fenómenos naturales, tales como los algoritmos genéticos, el recocido simulado o la optimización por colonias de hormigas . Liao et al. [1] presentan una revisión de la aplicación de los métodos heurísticos en el campo de la gestión del proyecto y de la construcción.

En relación con la optimización de las estructuras, si bien la información más antigua se remonta al siglo XV con los trabajos de Leonardo da Vinci y de Galileo Galilei sobre la disminución del peso de estructuras de madera, hay que esperar al siglo XIX con Maxwell y Levy, y a comienzos del siglo XX con Mitchell, para ver las primeras aportaciones en el diseño de mínimo peso de estructuras de arcos y cerchas metálicas. En 1994, Cohn y Dinovitzer [2] realizaron una amplia revisión de los métodos empleados en la optimización de estructuras, comprobando que la inmensa mayoría de las investigaciones llevadas a cabo hasta entonces se basaban en la programación matemática y en problemas más bien teóricos, con una preponderancia abrumadora de las estructuras metálicas frente a las estructuras de hormigón. Así, la aplicación de métodos heurísticos a la ingeniería estructural se remonta a los años 70 y 80 [3-5], siendo la computación evolutiva, y en especial los algoritmos genéticos, los métodos que más se han utilizado. La revisión de Kicinger et al. [6] proporciona un completo estado del arte de los métodos evolutivos aplicados al diseño estructural. Por otro lado, nuestro grupo de investigación, a través de su proyecto de investigación HORSOST, y más recientemente con el proyecto BRIDLIFE, ha presentado trabajos recientes de diseño automático y optimización de estructuras de hormigón armado con algoritmos genéticos [7] y con otras técnicas heurísticas [8-13], así como trabajos de optimización con hormigón pretensado [14,15] o de la optimización de las infraestructuras lineales [16].

Os dejo a continuación un vídeo tutorial donde se realiza una pequeña introducción al diseño optimización estructural. Espero que os sea de interés. Por cierto, si alguien se anima a hacer su tesis doctoral con nuestro grupo de investigación, será bien recibido.

Referencias:

[1] T.W. Liao, P.J. Egbelu, B.R. Sarker, S.S. Leu, Metaheuristics for project and construction management – A state-of-the-art review, Automation in Construction 20 (2011) 491-505.

[2] M.Z. Cohn, A.S. Dinovitzer, Application of structural optimization, ASCE Journal of Structural Engineering 120 (1994) 617-649.

[3] A. Hoeffler, U. Leysner, J. Weidermann, Optimization of the layout of trusses combining strategies based on Mitchel’s theorem and on biological principles of evolution, Proceedings of the Second Symposium on Structural Optimization (1973).

[4] M. Lawo, G. Thierauf, Optimal design for dynamic stochastic loading: a solution by random search, en: Optimization in structural design, University of Siegen, 1982, pp. 346-352.

[5] D.E. Goldberg, M.P. Samtani, Engineering optimization via genetic algorithms, Proceedings of the Ninth Conference on Electronic Computation ASCE (1986) 471-482.

[6] R. Kicinger, T. Arciszewski, K. De Jong, Evolutionary computation and structural design: A survey of the state-of-the-art, Computers & Structures 83 (2005) 1943-1978.

[7] F.J. Martinez, F. González-Vidosa, A. Hospitaler, V. Yepes, Heuristic optimization of RC bridge piers with rectangular hollow sections, Computers & Structures 88 (2010) 375-386.

[8] I. Paya-Zaforteza, V. Yepes, F. González-Vidosa, A. Hospitaler, On the Weibull cost estimation of building frames designed by simulated annealing, Meccanica 45 (2010) 693-704.

[9] V. Yepes, F. González-Vidosa, J. Alcala, P. Villalba, CO2-Optimization design of reinforced concrete retaining walls based on a VNS-Threshold acceptance strategy, Journal of Computing in Civil Engineering ASCE 26 (2012) 378-386.

[10] C. Perea, V. Yepes, J. Alcala, A. Hospitaler, F. González-Vidosa, A parametric study of optimum road frame bridges by threshold acceptance, Indian Journal of Engineering & Materials Sciences 17 (2010) 427-437.

[11] A. Carbonell, V. Yepes, F. González-Vidosa, Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 27 (2011) 227-235.

[12] A. Carbonell, F. González-Vidosa, V. Yepes, Design of reinforced concrete road vaults by heuristic optimization, Advances in Engineering Software 42 (2011) 151-159.

[13] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá,  Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7) (2014) 1190 – 1205.

[14] J.V. Martí, F. González-Vidosa, Design of prestressed concrete precast pedestrian bridges by heuristic optimization, Advances in Engineering Software 41 (2010) 916-922.

[15] J.V. Martí, F. González-Vidosa, V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures 48 (2013) 342-352.

[16] C. Torres-Machí, A. Chamorro, C. Videla, E. Pellicer, V. Yepes. An interative approach for the optimization of pavement maintenance mangement at the network level, The Scientific World Journal ID 524329 (2014).

[17] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures 92 (2015) 112-122.

[18] J.V. Martí, V. Yepes, F. González-Vidosa. Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE 141(2) (2015) 04014114.

[19] V. Yepes, J.V. Martí, T. García-Segura. Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction 49 (2015) 123-134.

[20] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez. A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4) (2015) 1024-1036.

[21] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí. Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540) (2015), e114.

[22] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92 (2015) 112-122.

[23] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120 (2016) 231-240.

 

14 julio, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, ordenadores    

Las gráficas de superficie resultan de interés, por ejemplo, para representar la Superficie de Respuesta en un Diseño de Experimentos, o bien cuando estamos representando la predicción de un fenómeno a través de unas redes neuronales. Sea cual sea el motivo, dejo a continuación algunas pautas para que esta tarea sea sencilla.

Sea, por ejemplo, la parametrización de un algoritmo de Simulated Annealing donde hemos realizado experimentos con distintas longitudes de cadenas de Markov (columnas) y distintos coeficientes de enfriamiento (filas). En la tabla se encuentran los resultados medios en coste encontrados tras realizar 9 ensayos en cada caso.

20000 30000 40000 50000
0,95 2652 2645 2637 2634
0,96 2650 2644 2637 2635
0,97 2648 2644 2637 2636
0,98 2647 2642 2637 2636
0,99 2647 2641 2637 2637

 

Para poder representar dichos puntos, necesitamos definir dos vectores fila: x será, por ejemplo, el vector fila de los coeficientes de enfriamiento, e y será el vector fila de las longitudes de cadena de Markov.

>> x=[0.95 0.96 0.97 0.98 0.99]

x =

0.9500 0.9600 0.9700 0.9800 0.9900

>> y=[20000 30000 40000 50000]

y =

20000 30000 40000 50000

>> z=[2652 2645 2637 2634

2650 2644 2637 2635
2648 2644 2637 2636
2647 2642 2637 2636
2647 2641 2637 2637]

z =

2652 2645 2637 2634
2650 2644 2637 2635
2648 2644 2637 2636
2647 2642 2637 2636
2647 2641 2637 2637

 Sin embargo, la matriz z tiene que trasponerse, de forma que en filas vengan los datos de y:

>> z=z’

z =

2652 2650 2648 2647 2647
2645 2644 2644 2642 2641
2637 2637 2637 2637 2637
2634 2635 2636 2636 2637

Ahora  ya podemos dibujar la superficie, con varias opciones:

>> mesh (x,y,z)

Superficie mesh

 >> surf(x,y,z)

 

Superficie surf

>> contour (x,y,z)

Superficie contour

 >> surfc (x,y,z)

Superficie surfc

 >> pcolor (x,y,z)

Superficie pcolor

 

 

22 febrero, 2016
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, investigación operativa, optimización, ordenadores, Planificación, programación, proyectos    

Henry Laurence Gantt (1861-1919)

Si tuviésemos que hablar de la historia de la planificación y control de las obras, deberíamos referirnos a la primera de las construcciones realizadas por el hombre y perdida en el origen de nuestra especie. Construcciones como las pirámides de Egipto no pudieron construirse sin un plan previo y una compleja organización de recursos. Sin embargo, si queremos utilizar las actuales técnicas de planificación, podríamos reducir significativamente nuestra historia y remontarnos apenas medio siglo en Estados Unidos, cuando tanto desde el ámbito militar como desde el civil, de forma independiente, se sentaron las bases de la técnicas basadas en el método del camino crítico (Critical Path Method, CPM) y en el método PERT (Program Evaluation and Review Technique). La planificación y programación de proyectos complejos, sobre todo grandes proyectos unitarios no repetitivos, comenzó a ser motivo de especial atención al final de la Segunda Guerra Mundial, donde el diagrama de barras de Henry Gantt  era la única herramienta de planificación de la que se disponía, que fue un método innovador en su momento, pero muy limitado. Gannt publicó en 1916 “Work, Wages, and Profits“, un texto donde discutía estos aspectos de planificación y otros relacionados con la productividad. De todos modos, para ser más exactos, Gantt no fue el pionero en el uso de esta herramienta. Otros autores como Joseph Priestley en 1765 o William Playfair en 1786, ya había sugerido ideas precursoras, que el ingeniero  Karol Adamiecki desarrolló en 1896 en lo que él llamó como “Harmonograma”. También deberíamos destacar aquí los primeros intentos desarrollados, entre 1955 y 1957 por la “Imperial Chemical Industries” y el “Central Electricity Generating Board”, en el Reino Unido, donde se desarrolló una técnica capaz de identificar la secuencia de estados más larga e irreductible para la ejecución de un trabajo, en línea con lo que después se llamaría CPM (Crítical Path Method). Estas empresas consiguieron ahorros de tiempo en torno al 40%, pero debido a que no se publicaron estas innovaciones, cayeron en la oscuridad, de la cual se despertó con los avances que se desarrollaron al otro lado del océano. (más…)

28 enero, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, hormigón, investigación operativa, logística, modelo matemático, optimización, ordenadores, transporte    

Charles Darwin en una fotografía tomada por J.M. Cameron en 1869.

Resulta fascinante comprobar cómo aplicando los mecanismos básicos de la evolución ya descrita por Darwin en su obra fundamental, El origen de las especies por medio de la selección natural, o la preservación de las razas preferidas en la lucha por la vida, publicada en 1859, se pueden generar algoritmos capaces de optimizar problemas complejos. Este tipo de metaheurísticas inspiradas en la Naturaleza ya se comentaron en posts anteriores cuando hablamos de la optimización por colonias de hormigas o de la cristalización simulada. Aunque es un algoritmo ampliamente conocido por la comunidad científica, voy a intentar dar un par de pinceladas con el único afan de divulgar esta técnica. La verdad es que las implicaciones filosóficas que subyacen tras la teoría de Darwin son de una profundidad difícil de entender cuando se lleva a sus últimos extremos. Pero el caso es que estos algoritmos funcionan perfectamente en la optimización de estructuras de hormigón, problemas de transporte y otros problemas difíciles de optimización combinatoria.

Para aquellos interesados, os paso en las referencias un par de artículos donde hemos aplicado los algoritmos genéticos para optimizar rutas de transporte aéreo o pilas de puente huecas de hormigón armado. (más…)

Publicada By  Víctor Yepes Piqueras - algoritmo, costes, Docencia, economía, estructuras, hormigón, investigación, modelo matemático, optimización, ordenadores, Puentes    

Este artículo describe la impartición de un curso de posgrado en el diseño automatizado y optimización económica de estructuras de hormigón. El contenido forma parte de un Máster en Ingeniería de Hormigón que comenzó en octubre de 2007. El curso aplica los algoritmos heurísticos al diseño práctico de estructuras reales de hormigón, tales como muros, pórticos y marcos de pasos inferiores de carreteras, pórticos de edificación, bóvedas, pilas, estribos y tableros de puentes. Se presentan como casos prácticos dos tableros de puente de hormigón pretensado usados en la obra pública de construcción de carreteras. En primer lugar, se aplica SA a un tablero de un puente peatonal de viga artesa de hormigón prefabricado. El  segundo ejemplo aplica TA a un tablero de losa continua de hormigón postesado. Los casos estudiados indican que la optimización heurística es una buena opción para diseñar   estructuras de hormigón pretensado reduciendo los costes.

18 julio, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  ,  |  

Página siguiente »

Universidad Politécnica de Valencia