Vibradores externos para encofrados de hormigón

Figura 1. Vibrador eléctrico externo. https://beka.cl/ar26-vibrador-externo-wacker-neuson

La compactación del hormigón mediante vibración externa se lleva a cabo transmitiendo la vibración al hormigón a través del encofrado o molde que lo contiene. El propósito de expulsar burbujas para obtener la mayor compacidad posible en el hormigón. Se puede adaptar a propósito al dispositivo vibratorio incorporado. El vibrador externo contribuye a compactar de manera uniforme toda la masa de hormigón, garantizando un proceso completo en lugar de focalizarse únicamente en algunas áreas. Es especialmente eficaz en zonas de difícil acceso, como zonas densamente armadas, ya que la vibración se transmite a través de todo el encofrado de hormigón y, consecuentemente, al hormigón fresco en su totalidad.

Los vibradores adosados al encofrado son menos eficaces que los vibradores internos, ya que parte de la energía aplicada es absorbida por los moldes; sin embargo, resultan muy útiles para la compactación en ciertos elementos estructurales, como muros poco inclinados y columnas muy reforzadas, donde es difícil o imposible utilizar vibradores de inmersión. En tales situaciones, se utilizan pequeñas unidades portátiles que se aseguran de forma rígida al encofrado.

Su ámbito de aplicación más común es en la prefabricación, donde generalmente se utilizan hormigones de resistencias secas. Ante la vibración del encofrado, que debe ser principalmente metálico, la masa de hormigón responde en función de su granulometría y de la cantidad de agua presente. El mortero permite pequeños movimientos de acomodo de los agregados gruesos, pero limita los desplazamientos excesivos. Si la viscosidad del mortero no es la adecuada, existe el riesgo de segregación del agregado grueso. Al finalizar la acción del vibrado externo, aparece una capa brillante y húmeda sobre la superficie del hormigón.

Para llevar a cabo esta técnica de compactación, se emplean vibradores de encofrado que se fijan firmemente a soportes sólidos en el exterior del encofrado. Esto implica el uso de encofrados robustos, preferiblemente metálicos, y asegurados con abrazaderas o rigidizadores para evitar movimientos durante el proceso de vibración. En términos generales, una placa de acero con un espesor de 5 a 10 mm suele ser adecuada cuando se cuenta con una adecuada rigidización mediante nervios transversales. Estos vibradores se utilizan principalmente en prefabricados de gran tamaño con encofrados adecuadamente reforzados, y ocasionalmente en obras “in situ” en áreas donde los vibradores de inmersión no son viables o cuando el hormigón está demasiado seco. Para encofrados verticales, es aconsejable utilizar apoyos de neopreno u otros elastómeros para evitar la transmisión de vibraciones a la base o al terreno. Esto ayuda a prevenir la formación de aberturas en las juntas que podrían ocasionar pérdidas de lechada.

Generalmente, se utilizan para secciones de hormigón con un espesor que no excede los 30 cm. Cuando el espesor es mayor, se recomienda complementar la vibración en el encofrado con la utilización de vibradores internos, a menos que se trate de elementos prefabricados, donde a veces se han obtenido resultados satisfactorios para secciones de hasta 60 cm de espesor.

Figura 2. Disposición de vibradores externos de encofrado. https://web.icpa.org.ar/wp-content/uploads/2019/04/Compactacion-del-hormigon-jul2016.pdf

Tipos de vibradores externos de encofrado

Los vibradores externos de encofrado más comunes se dividen en dos tipos principales: rotatorios y de reciprocidad.

  • Vibradores rotatorios: son equipos que generan principalmente un movimiento armónico simple con componentes tanto en el plano del encofrado como ortogonal al mismo. Normalmente, operan con frecuencias entre 6.000 y 12.000 r.p.m. Al igual que los vibradores internos, pueden ser neumáticos, hidráulicos o eléctricos. En los dos primeros, la fuerza centrífuga se logra mediante el giro de una masa excéntrica, mientras que en los eléctricos, las masas excéntricas están ubicadas en cada uno de los árboles del motor.
  • Vibradores de reciprocidad: son equipos que operan mediante un pistón que se acelera en una dirección hasta detenerse al impactar contra una placa de acero, para luego ser acelerado en dirección opuesta. Por lo general, son de tipo neumático y su frecuencia oscila entre 1.000 y 5.000 r.p.m. Estos sistemas generan impulsos que actúan perpendicularmente al encofrado.

Los vibradores eléctricos externos ofrecen una alternativa fiable a los dispositivos de vibración neumática, abordando eficazmente dos desafíos principales en aplicaciones de encofrado de hormigón: el ruido y el consumo de energía.

Los vibradores neumáticos pueden generar un nivel de ruido considerable, alcanzando hasta 105 dB(A) incluso en condiciones de vacío. Esto implica que los usuarios deben tomar precauciones cuando el nivel de ruido en el lugar de trabajo excede los 90 dB(A). Por contra, los vibradores eléctricos mantienen su nivel de ruido constantemente por debajo de los 80 dB(A), eliminando la necesidad de tomar medidas adicionales.

Es importante considerar que cuando no hay operarios presentes cerca de los vibradores, la presión sonora se reduce en 3 dB(A) al duplicar la distancia a la fuente. Por lo tanto, una medición estándar de presión acústica de 105 dB(A) tomada a una distancia de 1 m sigue siendo lo suficientemente alta como para superar los 90 dB(A) en un radio de acción de 32 m.

El uso del encofrado conlleva un notable aumento en el nivel de ruido, especialmente al inicio del vertido del hormigón, donde se pueden alcanzar fácilmente los 120 dB(A). Este efecto también se observa en los vibradores eléctricos, aunque la diferencia inicial mínima es de al menos 15 dB(A). Sin embargo, es esencial recordar que los estándares establecidos por el R.D. 286/2006, de 10 de marzo, sobre la protección de la salud y seguridad de los trabajadores frente a los riesgos asociados con la exposición al ruido, se refieren al nivel diario equivalente. En consecuencia, es necesario evaluar el tiempo total de exposición del operario al ruido en lugar de simplemente considerar los niveles instantáneos medidos, limitando esta exposición a un máximo semanal. Por ejemplo, una exposición de 15 minutos diarios a un nivel de 120 dB(A) resultaría en un nivel de presión sonora equivalente de 105 dB(A). Esto implica que el nivel de 90 dB(A) se superaría en un radio de acción de 32 m.

En cuanto al consumo de energía de los equipos, aunque cada situación requiere un análisis individualizado, la realidad es que la relación entre la solución eléctrica y la neumática es de 1 a 20. Por lo tanto, el diferencial de costos entre ambas soluciones se amortiza en menos de un año en condiciones normales de trabajo. De hecho, el uso de un sistema de vibradores eléctricos se vuelve rentable en un plazo máximo de 5 años, gracias al ahorro de energía al cambiar de la solución neumática a la eléctrica. Los defensores de los vibradores neumáticos han argumentado a su favor, afirmando que estos pueden permanecer instalados en los moldes durante el curado con vapor, mientras que los eléctricos no. No obstante, los vibradores eléctricos actuales se diseñan para que puedan operar en atmósferas de vapor, eliminando la necesidad de desmontarlos durante el proceso de curado.

Consideraciones sobre los moldes

El diseño del molde no solo influye en la carga dinámica soportada por la acción de los vibradores, sino que también impacta en su durabilidad y eficiencia. Desde el punto de vista de la resistencia de los moldes, es crucial evitar que la frecuencia de excitación de los vibradores coincida con la frecuencia propia del molde, lo que ayuda a minimizar la carga dinámica inducida por la vibración en la estructura metálica.

La relación entre la frecuencia de los vibradores y la frecuencia propia del molde determina la amplificación dinámica experimentada por la estructura. La frecuencia de funcionamiento debe superar la frecuencia propia del molde, con una relación que exceda el valor de 3 para alcanzar factores de amplificación por debajo de 0,125. El límite inferior de esta frecuencia propia está determinado por la resistencia del molde.

Ubicación de los vibradores

Es esencial considerar que los puntos de anclaje de los vibradores en la estructura del molde deben coincidir con los rigidizadores, o sobre dispositivos especiales, evitando situarlos sobre la chapa del molde. De lo contrario, las tensiones localizadas que se pueden generar cerca del vibrador podrían provocar el colapso del encofrado. Por lo tanto, la disposición de los vibradores está determinada principalmente por la ubicación y distribución de los rigidizadores. Los vibradores se instalan con su eje perpendicular al eje de mayor inercia de los refuerzos del molde. En encofrados verticales, la distancia entre vibradores se encuentra comprendida entre 1,5 y 2,5 m. Además, al emplear vibradores eléctricos en encofrados de membrana, es importante tomar las precauciones necesarias para prevenir el sobrecalentamiento y el riesgo de incendio.

Selección de los vibradores

La selección de los vibradores implica considerar varios parámetros:

  • Amplitud: Influye en la compactación y no debe ser inferior a 0,04 mm.
  • Aceleración: La compactación efectiva del hormigón ocurre dentro del rango de 0,5 a 3 g; niveles superiores no mejoran el proceso. Está relacionada con la fuerza centrífuga generada por el vibrador.
  • Frecuencia: El alcance de la vibración es proporcional a la frecuencia.

Teóricamente, se deberían combinar estos tres parámetros para obtener una amplitud alta, una fuerza centrífuga elevada y una frecuencia entre 6.000 y 9.000 r.p.m. Sin embargo, en la práctica, es necesario encontrar un compromiso. Por ejemplo, dado que la amplitud es inversamente proporcional a la frecuencia, no conviene seleccionar vibradores con una frecuencia excesivamente alta, pues esto limitaría la amplitud.

Para abordar esta dificultad, existen equipos con una función de doble frecuencia. Este vibrador de masa móvil se conecta a través de un variador de velocidad electrónico, permitiendo alcanzar una frecuencia de 3.000 r.p.m., lo que implica una amplitud elevada que facilita el llenado de los moldes y su rápida compactación. Al activar el vibrador en sentido opuesto, el variador ajusta la frecuencia a 6.000 r.p.m., reduciendo así la amplitud. Este proceso de “revibrado” permite redistribuir los áridos más finos en el hormigón y mejorar la calidad superficial del producto final.

En el caso de vibradores externos para encofrados verticales, para hormigones de consistencia seca se prefuere una frecuencia inferior a 6.000 r.p.m., una amplitud mayor a 0,13 mm y una aceleración transmitida a los encofrados verticales de 1 a 2 g. En el caso de consistencia plástica, la frecuencia será mayor a 6.000 r.p.m., la amplitud menor a 0,13 mm y la aceleración de 3 a 5 g.

Consideraciones en el uso de vibradores externos de encofrado

Se destacan los siguientes puntos:

  • Se debe verificar que todas las juntas, tanto dentro como entre los tableros, estén bien ajustadas y selladas. El encofrado tiende a moverse más que cuando se utilizan atizadores, lo que podría permitir que la lechada se filtre por la más mínima de las aberturas.
  • Es importante asegurarse de que los vibradores estén firmemente sujetos o atornillados a los soportes y se supervisen constantemente durante su uso. De lo contrario, las vibraciones no se transmitirán completamente al encofrado y al hormigón.
  • El hormigón se deberá verter en pequeñas cantidades dentro de las secciones para lograr capas uniformes de aproximadamente 150 mm de espesor. Esto ayuda a evitar la incorporación de aire a medida que aumenta la carga.
  • Todos los accesorios deben estar bajo observación constante, preferiblemente atornillados en lugar de clavados, especialmente las tuercas de los pernos, que pueden aflojarse fácilmente debido a la vibración intensa. También se debe monitorear cualquier pérdida de lechada de hormigón y sellar las fugas siempre que sea posible.
  • Cuando sea posible, los 600 mm superiores del hormigón en un muro o una columna se compactarán utilizando un atizador; si esto no es factible, se compactará manualmente o mediante paleo hacia abajo sobre la cara del encofrado. Los vibradores externos pueden crear espacios entre el encofrado y el hormigón; mientras que en las capas inferiores estos espacios se cierran gracias al peso de las capas superiores de hormigón, en la última capa pueden permanecer abiertos, lo que podría deformar la superficie.

Os dejo a continuación un artículo sobre la prevención de daños por el uso de vibradores externos en piezas prefabricadas.

Descargar (PDF, 697KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas de colocación del hormigón bajo el agua

Figura 1. Colocación de hormigón sumergido con tubo tremie. https://tecnologiadelhormigonarmado.blogspot.com/p/hormigon-armado-en-ambientes-marinos.html

El hormigón sumergido o bajo el agua se caracteriza por emplearse en estructuras que deben estar continuamente en contacto con este líquido. La construcción de cimentaciones bajo el agua con hormigón no es una novedad. Se encuentran referencias de este método en el tratado De Arquitectura de Vitruvio (88-26 a. C.). Actualmente, este procedimiento se utiliza con frecuencia, especialmente en la cimentación de obras marítimas, sin embargo, su aplicación debe ser precisa y cuidadosa. Antes de decidirse por esta forma de hormigonar, es siempre preferible tratar de efectuar el hormigonado en seco, utilizado uno u otro de los diversos procedimientos existentes para agotar el agua, o, incluso, resolver la construcción utilizando elementos prefabricados.

Un hormigón sumergido debe tener características especiales en sus componentes, como son el tipo de árido, el agua de amasado, el cemento y los aditivos. Este tipo de hormigón debe mantenerse inerte a las condiciones del ambiente (el cemento y los áridos no deben reaccionar con el agua), será impermeable para evitar la corrosión en el caso de que sea hormigón armado y cumplirá con la resistencia requerida.

En primer lugar, el hormigón utilizado debe tener una dosificación más rica (sobredosis de cemento de un 25 %), con cementos de alto poder aglutinante que garanticen una buena compacidad bajo el agua. Es posible mejorar su capacidad aglutinante añadiendo aireantes, así como plastificantes para lograr la docilidad deseada sin necesidad de aumentar el contenido de agua (asiento en cono de Abrams de 150 mm). Cuando se trabaja en aguas en movimiento, puede ser necesario recurrir a aceleradores de fraguado, algunos de los cuales están diseñados específicamente para evitar la penetración del agua en el hormigón.

Para sumergir hormigón de manera efectiva, es fundamental garantizar su resistencia al lavado durante su colocación, lo cual requiere garantizar la adecuada consistencia y homogeneidad de la mezcla. Sin embargo, este objetivo enfrenta desafíos debido a dos factores adversos. En primer lugar, el movimiento del agua, ya sea por las corrientes fluviales o las mareas marinas, puede erosionar los hormigones, arrastrando parte de su cemento y generando lechadas. Estas lechadas dificultan la adhesión entre capas, aumentando la permeabilidad del conjunto y debilitando los morteros, lo que resulta en una disminución de su resistencia. Además, la disparidad en la densidad de los componentes del hormigón puede provocar su separación debido a la fluidez de la mezcla. Los áridos más pesados tienden a acumularse en el fondo y son más propensos al deslavado, ya que quedan protegidos únicamente por una delgada película de aglomerante.

Todo lo anterior implica minimizar al máximo el contacto del hormigón con el agua durante su transporte, así como durante el proceso de vertido y extendido. Para lograrlo, se recurre habitualmente a técnicas como el método de talud en avance, el uso de cubas especializadas y la utilización de canaletas (tubo tremie). No obstante, también existen otros procedimientos como el bombeo directo del hormigón, el hormigón prepakt (inyección con un mortero de áridos gruesos colocados en un molde) o el uso de hormigón ensacado. A continuación se describen las técnicas habituales.

Procedimiento de talud en avance

Cuando el agua no supera los 0,80 m de profundidad, pueden sumergirse las masas de hormigón por el procedimiento llamado de talud, análogo al que se emplea para la ejecución de los terraplenes. Este método solo resulta efectivo en aguas poco profundas, generalmente con un espesor inferior a los 80 cm. La operación comienza depositando el hormigón en la región A, que se incorpora por su peso con la masa B en flujo, que progresa con un talud C, el único en contacto directo con el agua y susceptible al deslavado. Se requiere una vigilancia constante para evitar que el agua interfiera con este talud, donde pueden formarse suspensiones de lechada que no fraguan y que podrían generar superficies de deslizamiento y roturas en el macizo.

Figura 2. Hormigonado bajo el agua con talud de avance.

Después de cada interrupción, se limpia el talud utilizando cepillos de acero para descarnar la superficie y eliminar los excesos de lechada. Cuando el cimiento está rodeado por el terreno o por algún tipo de estructura, es necesario eliminar las lechadas que se filtran del hormigón, ya sea utilizando cubos o bombas. Asimismo, al unir una masa de hormigón ya fraguada con otras posteriores, también es necesario limpiar estas lechadas. Es importante destacar que la masa en avance no puede compactarse ni vibrarse. Durante períodos de aguas agitadas, como crecidas u oleajes, es necesario suspender los trabajos.

Procedimiento con cuba

Este método es adecuado para profundidades superiores a 0,80 m. El hormigón se transporta a través de una cuba completamente estanca, la cual desciende lentamente hacia el área a hormigonar mediante un cabrestante o una grúa. Una vez depositadas sobre el macizo, un buzo la abre, elevándola suavemente luego para permitir que el hormigón fluya en aguas tranquilas. La función de los buzos se limita a colocar la cuba sobre el área a hormigonar y abrir sus compuertas, luego envían la cuba a la superficie para repetir el proceso. Sin embargo, este procedimiento no es apropiado cuando se necesita verter hormigón en un encofrado de dimensiones reducidas, pues su movimiento ascendente y descendente puede provocar agitación en el agua, actuando como un pistón (Figura 3).

Figura 3. Cuba bajo el agua en un encofrado de dimensiones reducidas (Galabru, 1964). https://tecnologiadelhormigonarmado.blogspot.com/p/hormigon-armado-en-ambientes-marinos.html

Las cubas son estancas, diseñadas con paredes inclinadas para facilitar la salida del hormigón. Se abren en la parte inferior mediante sistemas hidráulicos o neumáticos. Además, cuentan con patas que aseguran su estabilidad al posarse sobre el terreno, permitiendo que las puertas pivoten libremente. La capacidad de las cubas varía generalmente de 0,20 a 1,00 m³.

Durante la operación, las cubas descargan su contenido primero en el fondo y luego sobre las capas previamente vertidas y aún frescas, evitando así el contacto directo del hormigón con el agua y logrando una adecuada trabazón. Para áreas extensas, se subdividen en secciones pequeñas, generalmente no mayores a 6×6 m, ya que el hormigón tiene un radio de extensión de unos 30 cm y las cubas no se abren a más de 30 cm de altura.

Una variante de este sistema, utilizada en obras con poco volumen de hormigón, implica el uso de bolsas de lona impermeabilizadas, que se bajan boca abajo, amarradas por el fondo y cerradas en la boca con un nudo, permitiendo su apertura manual. Estas bolsas tienen una capacidad que no supera los 0,10 m³.

El método de inmersión en cubas presenta ventajas como una operación sencilla y una rápida ejecución del hormigonado, resultando en hormigones de buena calidad con una notable trabazón. Además, no requiere más equipo especializado que el depósito para sumergir el hormigón.

Procedimiento con canaleta (tubo tremie)

La canaleta o vertedera, conocida como tubo-tolva o tubo tremie, consta de un tubo especial de acero rígido con un diámetro de 20 a 45 cm, asegurando que el hormigón se vierta directamente sobre otra masa de hormigón sin dejar una capa intermedia de lodos u otros materiales. Las paredes de la tubería deben ser lisas y contrapesadas para prevenir la flotación, especialmente si se utiliza una placa para sellar la boca de la tubería y esta se sumerge estando vacía. El tubo se sumerge con un tapón que se extrae (método de cierre de fondo) o se desplaza (tapón deslizante) al verter el hormigón. Para evitar la entrada de agua, el tubo debe mantenerse constantemente sumergido en el hormigón a una profundidad de 1,00 o 1,50 m bajo la superficie del material. Las velocidades ideales de elevación del hormigón oscilan entre 0,3 y 3 m/h. Es crucial mantener una colocación continua, ya que los retrasos pueden provocar el endurecimiento del hormigón, lo que dificultaría la reanudación del flujo. El hormigón debe ocupar automáticamente el espacio entre el tubo y el encofrado sin necesidad de mover el tubo horizontalmente. En caso de utilizar varios tubos, se recomienda mantener una separación de entre 3 y 5 m entre ellos.

Un puente grúa equipado con cabrestantes móviles sostiene estos tubos, lo que permite subirlos y bajarlos. Todo el montaje se encuentra instalado en un andamio con plataforma de servicio. En la parte superior del tubo, se encuentra una tolva o un embudo para verter el hormigón. Se utiliza una tolva cuando se realizan aportaciones intermitentes de hormigón, como en el caso del transporte por cubas. Se emplea un embudo cuando se realiza una aportación continua de hormigón, como en el caso del hormigón bombeado. En la Figura 4 se observa el método del desplazamiento, que puede obtenerse utilizando un carrito o suspendiendo el tubo por medio de una grúa.

Figura 4. Colocación sumergida: método del desplazamiento

Esta técnica se emplea en una variedad de aplicaciones, que incluyen hormigones sumergidos, estructuras submarinas, reparaciones de hormigones sumergidos, construcción y unión de secciones de túneles submarinos, pilotes para cimentaciones de puentes y plataformas mar adentro. Se utiliza especialmente cuando se busca obtener una calidad estructural muy alta. Se han llevado a cabo operaciones de hormigonado con éxito a profundidades de hasta 50 m. Este procedimiento consiste en verter el hormigón in situ mediante un tubo, cuyo extremo inferior permanece siempre sumergido en el hormigón fresco, lo que ayuda a prevenir lavados y segregaciones significativas.

El proceso de hormigonado con tubo tremie consta de tres etapas: el cebado del tubo, la formación del bulbo y el vertido del hormigón.

Figura 5. Etapas del proceso de hormigonado con tubo tremie
  • Cebado del tubo: Es fundamental llenar completamente el tubo con hormigón sin que entre en contacto con el agua circundante. Para lograr esto, existen varios métodos, desde el uso de aire comprimido hasta otros más simples. Uno de los métodos más directos implica dejar caer un tapón que actúe como sello hermético dentro del tubo, asegurando así que la columna de hormigón descienda gradualmente, evitando el contacto con el agua y reduciendo la posibilidad de segregación debido a la caída libre. Otra opción es utilizar una cámara inflable tipo pelota en lugar del tapón, que se recupera después de cada proceso de cebado.
  • Formación del bulbo: Bajo el peso de la columna de hormigón fresco, este se extiende gradualmente alrededor del tubo debido a la tensión superficial. Es importante que el extremo inferior del tubo no se eleve más de 30 cm desde el fondo para evitar la segregación y el lavado del hormigón. Posteriormente, debido a la resistencia ejercida en el fondo y en la masa, la superficie del hormigón adquiere una forma de cúpula. Con el tubo hundido a la profundidad deseada, se forma el bulbo en la base de esta cúpula (Figura 1).
  • Vertido: Se lleva a cabo desplazando el tubo mediante el cabestrante y el puente grúa. Para impedir la entrada de agua, el tubo debe estar siempre lleno, realizándose la carga de hormigón de manera regular y continua para garantizar que no se vacíe. El peso del hormigón dentro del tubo debe ser siempre mayor que la presión del agua en su base.

Las técnicas de colocación por tremie suelen emplearse para el bombeo directo bajo el agua, aunque presentan algunas diferencias menores. En este método, el flujo se genera mediante la presión de la bomba en lugar de depender de la gravedad. La dosificación del material debe permitir el bombeo y el flujo una vez que la tubería se retira. Se utilizan tuberías más pequeñas, con secciones flexibles para la porción que queda embebida en el hormigón. La acción de la bomba puede provocar movimientos laterales que crean una lechada en la superficie de contacto entre la tubería y el hormigón. En algunos casos, puede ser necesario instalar una válvula de escape cerca del punto más alto de la tubería para evitar un bloqueo debido al vacío.

Os dejo a continuación unos vídeos que, espero, os resulten de interés.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón al vacío

Figura 1. Hormigón al vacío. https://www.solitec.eu/2021/11/11/il-vacuum-concrete-una-tecnica-ancora-valida/

El hormigón al vacío (vacuum concrete, en inglés) es una técnica concebida por primera vez por Billner en Estados Unidos en 1935, aunque no entró en Europa la técnica hasta los años 50 del siglo pasado. Persigue mejorar la resistencia y durabilidad del material y que implica la eliminación del exceso de agua de hidratación del cemento mediante presión de vacío antes de que comience el fraguado del hormigón. Esta acción conlleva una notable disminución en la relación agua/cemento (a/c) efectiva, lo que conlleva una mejora significativa en el rendimiento del hormigón. Aunque la reacción química entre el cemento y el agua requiere una relación a/c inferior a 0,38 para una óptima resistencia, la relación empleada suele ser mayor para mejorar su manejabilidad, sirviendo esta agua adicional para lubricar los componentes del hormigón fresco. Este exceso de agua crea poros capilares en el hormigón que aumentan su permeabilidad y reducen su resistencia.

La tecnología del hormigón al vacío resuelve este dilema, permitiendo tanto la trabajabilidad como la alta resistencia. Utiliza una bomba de vacío para aspirar el exceso de agua después de colocar y compactar el hormigón, lo cual puede suponer extraer entre el 10 % y 25 % del agua y aumentar la resistencia a compresión entre un 20 % y un 40 %. Las resistencias a los 7 días con vacío son aproximadamente las mismas que las obtenidas a los 21 días. Esta técnica es efectiva para una variedad de aplicaciones como suelos industriales, aparcamientos y losas de puentes. Tras aplicar el vacío, es posible caminar sobre la losa sin dejar rastro alguno, lo que elimina la necesidad de esperar períodos de tiempo. Los componentes clave incluyen una bomba aspiradora, un separador de agua, una almohadilla de filtración y un vibrador de placa de solera, que trabajan en conjunto para controlar la cantidad de agua eliminada y garantizar la calidad del hormigón resultante.

El efecto del vacío no se limita únicamente a la eliminación del exceso de agua, sino que también contribuye a llenar posibles huecos mediante la presión atmosférica. El vacío se logra mediante una bomba capaz de generar una depresión de 0,7 a 0,8 atmósferas. La duración de la aplicación del vacío varía según la consistencia inicial y el espesor del hormigón empleado. En la práctica, para elementos delgados como losas, muros o tuberías, el tiempo de aplicación del vacío suele ser de 10 a 20 minutos, mientras que para elementos de mayor grosor puede extenderse hasta 40 minutos. La temperatura mínima requerida para este proceso con hormigón es de 10 °C. Sin embargo, no todos los tipos de hormigón son adecuados para aplicar el vacío. Existe el riesgo de bloqueo superficial, que se refiere a la congestión de finos en la superficie que puede impedir el desarrollo del proceso. Por esta razón, el contenido máximo de cemento se limita a 350 kg/m³.

En este procedimiento, el hormigón se vierte en encofrados con una cara perforada, y el exceso de agua se extrae por succión a través de las perforaciones mediante una bomba de vacío. Los encofrados especiales empleados en este proceso consisten en una delgada cámara de baja altura cuya superficie en contacto con el hormigón es permeable, ya sea mediante una rejilla metálica o un tejido de caucho perforado. Las otras caras de la cámara son impermeables, con excepción de unas aberturas estratégicamente ubicadas a través de las cuales se genera el vacío en su interior. Estas aberturas, por lo general, se encuentran en la cara inferior del encofrado. Este método confiere al hormigón una notable cohesión, lo que facilita un desencofrado rápido.

Figura 2. Deshidratación al vacío del hormigón. https://industrysurfer.com/blog-industrial/construccion/hormigon-al-vacio-tecnologia-equipamiento-ventajas/

En una masa de hormigón recién vertida en un encofrado, existe cierto nivel de presión, derivado de la carga del hormigón fresco por encima del nivel considerado y de la presión atmosférica. Esta presión se divide en dos componentes: una presión intergranular, sostenida por el armazón o esqueleto formado por los áridos, y una presión intersticial, sostenida por el líquido que ocupa los espacios vacíos, es decir, el agua en la que están suspendidas las partículas de cemento.

El principio del tratamiento radica en eliminar o, al menos, reducir significativamente la presión intersticial al comunicar la matriz fluida del hormigón fresco, a través de un filtro, con una fuente de vacío. Sin embargo, es importante destacar que la presión total en el hormigón no se ve alterada, dado que la aplicación del vacío no afecta ni a la masa de hormigón sobre el nivel considerado ni a la presión atmosférica externa.

En estas circunstancias, la primera componente, es decir, la presión intergranular, experimenta un aumento repentino, lo que provoca que el armazón rígido se vea obligado a soportar lo que previamente sostenía el líquido. Como resultado, el esqueleto se compacta en busca de un nuevo equilibrio, reduciendo así sus espacios intersticiales y expulsando el exceso de agua, que se desplaza entre los granos hacia el filtro. Esta contracción persiste hasta que los áridos alcanzan la máxima compacidad compatible con su granulometría, momento en el cual cesa la compactación. En el caso de un recipiente, se observa cómo la superficie libre del hormigón desciende algunos centímetros durante este proceso de contracción.

El hormigón al vacío ofrece una serie de ventajas significativas, como un aumento de su resistencia final, la posibilidad de retirar los encofrados de los muros de forma más temprana, así como la combinación de trabajabilidad y resistencia gracias a la deshidratación mediante vacío. Además, presenta una alta durabilidad y densidad, junto con una reducción notable en la permeabilidad y en el tiempo requerido para el acabado final. También se observa un aumento del 20% en la resistencia de adherencia, facilitando su aplicación en trabajos de repavimentación y reparación. Asimismo, la reducción del agua reduce notablemente la retracción, con lo que se pueden separar las juntas hasta 20 m en pavimentos. Sin embargo, estas ventajas vienen acompañadas de algunos inconvenientes, como el consumo de energía y la necesidad de equipos específicos, lo que conlleva un costo inicial elevado y la necesidad de contar con mano de obra especializada. Además, la porosidad del hormigón puede permitir la filtración de agua, aceite y grasa, lo que podría debilitar la estructura con el tiempo.

En la Figura 3 se puede observar que el beneficio de la deshidratación del hormigón es más acusado en la capa superior que en la inferior. Por encima de 150 mm de profundidad, el efecto de este procedimiento es poco significativo. Por tanto, a efectos de mejora de resistencia, de reducción de poros y aumento de la durabilidad, esta mejora es particularmente evidente en las áreas donde más se necesita. Incluso, este procedimiento permite un aumento en la capa superficial de las soleras de hormigón que puede, en algún caso, competir con capas de rodadura.

Figura 3. Efecto de la deshidratación por vacío del hormigón. https://theconstructor.org/concrete/vacuum-concrete-techniques-equipments-advantages/6867/

Os dejo a continuación un artículo interesante sobre los primeros años de esta técnica en Colombia.

Descargar (PDF, 2MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Revibrado del hormigón

Figura 1. Vibrado del hormigón con aguja. Fuente: Revista Construir

La revibración del hormigón se emplea en ciertos casos para mejorar la adherencia entre el hormigón y el acero de refuerzo, para liberar el agua atrapada debajo de las barras horizontales y para eliminar posibles bolsas de aire adicionales. Esta práctica no causa ningún daño si el hormigón aún se encuentra maleable. Sin embargo, es crucial evitar el contacto entre la aguja del vibrador y el acero de refuerzo. La vibración transmitida a través de las armaduras al hormigón semiplástico puede resultar en pérdida de adherencia de la barra con el hormigón y fisuras en las armaduras.

La revibración ofrece una serie de beneficios significativos, como mejorar la resistencia a la compresión, de un 15 % hasta un 40 %, sobre todo a cortas edades. También permite aumentar la impermeabilidad, potenciar la adherencia, reducir las bolsas de grava, eliminar el agua atrapada y expulsar el aire y las bolsas de agua. Sin embargo, es importante tener en cuenta que no se debe aplicar el revibrado en mezclas con consistencia seca y granulometría abierta. Es, por tanto, más indicado para consistencias blandas.

El proceso implica la introducción de un vibrador en la masa de hormigón precompactada pasados unos 30 minutos de la primera compactación, pero dentro de las primeras 2 a 4 horas (antes del inicio del fraguado). Una regla práctica indica que se puede llevar a cabo el revibrado siempre que la aguja pueda penetrar en el hormigón por su propio peso y logre fluidificarlo. Además, es posible emplear un aditivo retardador del fraguado para facilitar este proceso.

En diferentes circunstancias, el revibrado puede ser igualmente ventajoso:

  • Al colocar hormigón en capas y vibrar la inferior, lo cual evita la formación de juntas entre ellas.
  • Para perfeccionar el acabado superficial de los pilares y muros superiores, eliminando el aire que suele acumularse en esas áreas.
  • Para cerrar las fisuras producidas por la retracción plástica.

Esta técnica es especialmente útil para hormigones con altos valores de relación agua-cemento, aquellos con baja retención de agua o en situaciones donde la colocación inicial ha sido compleja. Al colmar los vacíos generados durante el asentamiento inicial del hormigón fresco alrededor de la armadura horizontal, se garantiza una mejor calidad estructural.

Es crucial realizar el revibrado en el momento adecuado, cuando el hormigón aún está maleable. El proceso de fraguado generalmente comienza entre una hora y media y cuatro horas después de la vibración previa. Esta operación conlleva ciertos riesgos y es fundamental calcular con precisión la duración de la nueva vibración, ya que un error en cualquiera de estos aspectos puede causar daños irreparables al hormigón.

Dada la complejidad y el riesgo asociado, el revibrado es una tarea que debe ser ejecutada por personal altamente especializado, con un control meticuloso del proceso. Por esta razón, y debido al riesgo inherente, no es una práctica comúnmente empleada. En cualquier caso, es necesario obtener la aprobación previa de la dirección facultativa antes de llevar a cabo el revibrado.

Os dejo a continuación un artículo que estudia la acción del revibrado en morteros, hormigones y prefabricados, que espero os sea de interés.

Descargar (PDF, 2.02MB)

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigoneras transportadoras o camiones hormigonera

Figura 1. Camión hormigonera. https://commons.wikimedia.org/wiki/File:Cami%C3%B3n-hormigonera_Mercedes-Benz_2224.jpg

El hormigón producido en una planta de producción de hormigón se transporta a las obras donde se utilizará mediante camiones hormigonera (Figura 1). Estos vehículos, aunque diseñados para agitar, se utilizan con mucha frecuencia como mezcladores. Consisten principalmente en una cuba cilindro-cónica construida con chapa de alta resistencia al desgaste y de gran capacidad (de 6 a 10 m³), cuyo eje está inclinado aproximadamente 15º respecto a la horizontal. Estos camiones tienen dos modos de rotación: uno para cargar y mezclar, y otro opuesto para descargar. La mayoría de las autohormigoneras se emplean en centrales de venta de hormigón.

El principio de amasado es similar al de las mezcladoras de tambor horizontal con inversión de marcha. En el interior de la cuba, se encuentran dos hileras de espirales helicoidales de acero con piezas de desgaste fijadas a la pared. El material ingresa a la cuba a través de una tolva en la parte superior de la boca y sale por la parte inferior, cayendo primero en una tolva y luego en una canaleta de distribución plegable y orientable para el transporte.

La cuba está montada sobre un chasis general que se sitúa en la plataforma del camión. Los componentes giratorios incluyen una banda zunchada en la parte superior, que se apoya sobre dos rodillos, y un eje en el fondo de la cuba, que gira en un cojinete montado en un contrafuerte del chasis.

Figura 2. Detalle de las espiras de un camión hormigonera

La cuba presenta dos capacidades operativas distintas (eje 8/6,6):

  • En su función de agitador, se utiliza para recibir el hormigón previamente mezclado en la central y agitarlo durante el transporte, con una capacidad mayor de 8 m³.
  • En su rol de mezcladora, recibe la mezcla seca de la central de dosificación y la amasa durante el transporte, con una capacidad menor de 6,6 m³.

El volumen del tambor o cuba debe ser mayor, con una relación aproximada de 10 m³/8 m³/6,6 m³.

Para las operaciones de amasado o simplemente de agitación, la cuba gira en dirección que desplaza los productos hacia el fondo de la misma. La rotación en sentido contrario garantiza un vaciado total. Es común contar con dos velocidades para el proceso de amasado y una para el de descarga:

  • La primera velocidad, más lenta, se emplea para la agitación durante el transporte, cuando el material ya está amasado, ya sea porque se cargó hormigón mezclado en la central o porque se ha amasado durante parte del trayecto un material previamente cargado sin amasar.
  • La segunda velocidad, más rápida, se utiliza durante la carga de la hormigonera, la cual debe ser lo más rápida posible. También se emplea para el amasado en el caso de que se haya cargado dosificación sin amasar.
Tabla. Velocidades de rotación de la cuba para distintas operaciones

Los sistemas utilizados para el movimiento de la cuba son los siguientes:

  • Motor auxiliar, generalmente diésel, independiente del camión, lo que conlleva las siguientes ventajas:
    • Mayor durabilidad del motor del camión.
    • En caso de avería del camión, la hormigonera puede seguir funcionando sin que el hormigón fragüe.
  • Uso del mismo motor del camión. La caja de cambios cuenta con una salida lateral a la que se acopla una transmisión hidráulica que acciona el tambor. El inconveniente es que requiere camiones con una potencia considerablemente mayor, pero las ventajas son las siguientes:
    • Se utiliza un solo motor diésel, lo que resulta en un menor consumo de combustible.
    • Reducción de costes y menor necesidad de reparaciones y repuestos.
Figura 3. Partes de un camión hormigonera

El sistema de agua está compuesto por los siguientes elementos:

  • Depósito de agua con una capacidad de 500 a 700 litros, dependiendo de la capacidad requerida. Cuando no se realiza el mezclado en la central, el agua de amasado se añade al final del trayecto, unos minutos antes del vaciado. Esta práctica maximiza las ventajas del conjunto formado por las centrales y las hormigoneras.
  • Bomba de agua de tipo centrífugo.
  • Contador de agua y tuberías de distribución.

En cuanto al fraguado del cemento, este está influenciado por la temperatura ambiente y la calidad del mismo. Sin embargo, suele comenzar aproximadamente a los 20 minutos en climas cálidos y a los 40 minutos en invierno.

La norma C94-71 de la American Society for Testing and Materials (ASTM) establece un tiempo máximo de transporte de hormigón de 90 minutos cuando se utiliza un camión con agitador, y de 45 minutos cuando se transporta en camiones basculantes sin agitador. Por otro lado, el Código Estructural recomienda que, en condiciones normales, el intervalo de tiempo entre la adición del agua de amasado al cemento y a los áridos, y la colocación del hormigón, no debe exceder de una hora y media.

En la práctica, cuando las distancias a recorrer superan los 90 minutos, se opta por transportar mezclas secas y añadir agua al final del trayecto. Sin embargo, esta solución compromete la correcta dosificación del agua en la central.

Os dejo algunos vídeos sobre esta máquina.

Os dejo también la NTP 93: Camión hormigonera, que es una guía de buenas prácticas para el manejo seguro de la máquina.

Descargar (PDF, 175KB)

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Energía específica en los equipos de perforación y excavación mecánica

Figura 1. Energía específica requerida para diferentes sistemas de excavación.

La energía específica, también conocida como Specific Energy (SE) en inglés, se define como la cantidad de energía consumida para excavar un volumen unitario de roca. Esta medida se expresa en diversas unidades, tales como MJ/m, KW-h/m3, hp-h/yd3 o hp-h/t, que relacionan la energía consumida con el volumen excavado.

Es importante destacar que la energía específica tiende a aumentar cuando se busca producir partículas de un tamaño menor en una misma roca. Este incremento está directamente relacionado con el aumento de la resistencia a compresión de la roca en cuestión.

La energía específica requerida para la excavación de una determinada roca dependerá de dos factores clave: la separación de los cortadores (S) y su profundidad de ataque (P). El ratio entre estos dos parámetros, denominado S/P, se convierte en un elemento crucial al seleccionar equipos. Para rozadoras tipo “drag”, este ratio varía entre 2 y 4, mientras que para cortadores de discos oscila entre 10 y 20.

En términos prácticos, la energía específica desempeña un papel esencial al determinar los ratios de avance (m/h o m/día) de una máquina. Esta información se revela como un indicador clave para optimizar la eficiencia y el rendimiento de los equipos utilizados en la excavación de rocas.

La Figura 1 presenta el espectro de la energía específica necesaria para la fragmentación de una roca mediante diversos sistemas de excavación comúnmente utilizados.

El ratio de producción instantáneo (IPR, en inglés) de un equipo se puede calcular de la siguiente forma:

El ratio lineal de avance (ROP, en inglés) de un equipo se calcula de la siguiente forma:

El ratio de avance diario (AR, en inglés) de un equipo es:

La tabla que se presenta a continuación resulta útil para anticipar el ratio de producción (IPR) y el ratio de avance (AR) de un equipo mecánico, todo ello fundamentado en la energía específica.

Referencias:

  • MARTÍNEZ-PAGÁN, P. (2023). Laboreo de minas. 3.º Curso – GIRME – Ingeniería de Minas. Universidad Politécnica de Cartagena.
  • ROSTAMI, J. (2011). Mechanical Rock Breaking. In SME Mining Engineering Handbook, 3rd Edition, Darling, P. (Ed.), Society for Mining, Metallurgy, and Exploration, 417-434.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Equipos para excavación de roca dura en sección rectangular: Máquina de desarrollo minero

Figura 1. https://www.robbinstbm.com/products/mining-machines/mine-development-machine/

La Máquina de Desarrollo Minero “Mine Development Machine” (MDM) es un equipo especializado diseñado para la perforación de secciones no circulares, específicamente rectangulares, en entornos de rocas con una resistencia a la compresión de hasta 200 MPa. Este dispositivo está equipado con un cabezal de corte rotativo que cuenta con cortadores de disco para garantizar una eficiente excavación.

Hasta ahora, la excavación de galerías mineras y túneles de acceso se ha llevado a cabo mediante una metodología de perforación y voladura a menudo lenta y ardua. Históricamente, los métodos de túneles mecanizados han carecido de la personalización necesaria para agilizar las actividades mineras. El MDM ofrece una tasa de excavación el doble de rápida que la perforación y voladura, en el caso del modelo Robbins MDM5000. El perfil rectangular elimina la necesidad de verter una solera o cortar el invertido, lo que permite su uso inmediato por la flota de vehículos de la mina.

Su aplicación principal se encuentra en la construcción de infraestructuras mineras, especialmente en el desarrollo de túneles de acceso o galerías con dimensiones de 5,0 m de ancho por 4,5 m de alto. La solera resultante del túnel queda en condiciones óptimas para ser utilizada por los equipos mineros que operan sobre ruedas, facilitando así el transporte y movimiento en el interior de la mina.

Figura 2. https://www.robbinstbm.com/products/mining-machines/mine-development-machine/

El MDM utiliza gran parte de la misma tecnología que una máquina perforadora de túneles, incluyendo cortadores de disco que se desplazan en la misma pista durante un ciclo de perforación. Durante la perforación, los agarres se extienden contra las paredes del túnel, reaccionando al impulso hacia adelante de la máquina, al igual que en las TBM estándar. Los cilindros hidráulicos de propulsión se extienden, empujando los cortadores hacia la roca. La transferencia de este alto impulso a través de los cortadores de disco giratorios crea fracturas en la roca, provocando que los fragmentos se desprendan de la cara del túnel. Un sistema único de agarre flotante presiona contra las paredes laterales y se bloquea en su lugar mientras los cilindros de propulsión se extienden, permitiendo que la viga principal avance el MDM. Además, se coloca soporte continuo inmediatamente detrás del cabezal cortador en un patrón que cumple con los estándares de la mina. El soporte y la instalación de servicios públicos como tuberías, ventilación e iluminación se realizan simultáneamente a la perforación. Dado que la roca se fractura mecánicamente, no se requiere trituración secundaria y la roca rota es adecuada para el transporte mediante cintas transportadoras.

Existen algunas diferencias clave: mientras que una TBM estándar tiene un movimiento circular constante coincidente con el eje del túnel durante la perforación, el MDM utiliza un movimiento oscilante del cabezal cortador. El cabezal cortador del MDM oscila hacia arriba/abajo alrededor de un eje horizontal perpendicular al eje del túnel. La evacuación de material en el MDM es bastante diferente a la de una TBM estándar, con el material desplazándose hacia atrás desde el cabezal cortador en cada barrido descendente hacia una cinta transportadora o cadena instalada en el invertido. Esencialmente, la carga de la cinta transportadora se ejecuta mediante el barrido descendente del cabezal cortador en lugar de que los cucharones de material se vacíen sobre una cinta transportadora mientras el cabezal cortador gira, como en la configuración de una TBM estándar.

El MDM presenta diversas ventajas para las minas en comparación con otros métodos, como la perforación y voladura. La perforación con el MDM tiene tasas de avance aproximadamente el doble de las de una perforación y voladura, lo que resulta en paredes de túneles más uniformes, menos desprendimiento excesivo y un menor requerimiento de soporte estructural. El aumento en las tasas de avance se debe en parte al progreso continuo de la máquina, a diferencia de las operaciones de perforación y voladura, donde los equipos deben salir del túnel durante la detonación por motivos de seguridad. Además, la instalación simultánea de soporte estructural aumenta aún más las tasas generales de avance en comparación con las operaciones de perforación y voladura que deben instalar el soporte estructural de manera secuencial.

Este avanzado equipo ha demostrado su eficacia en la mina de plata de Fresnillo, ubicada en México. Su rendimiento se destaca con avances notables de 10-12 metros por día en condiciones de rocas con una resistencia inferior a 100 MPa, y de 7-10 metros por día en terrenos más desafiantes, con resistencia en el rango de 100-150 MPa. La máquina ha perforado a velocidades de hasta 52 metros en una semana y 191 metros en un mes en andesita y esquisto con intrusiones de cuarzo que desafiaron intentos previos de excavación con rozadoras.

La versatilidad y eficiencia de la MDM la convierten en una herramienta crucial para la ejecución de proyectos mineros, mejorando la productividad y la seguridad en el desarrollo de túneles y galerías en condiciones diversas.

Os dejo algunos vídeos de esta máquina.

Os dejo, también, un artículo explicativo de esta máquina.

Descargar (PDF, 7.14MB)

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Río Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Excavación mecánica a cielo abierto: Highwall miners

Figura 1. Cat HW300 Highwall Miner, https://h-cpc.cat.com/cmms/v2?&f=subfamily&it=group&cid=406&lid=en&sc=CA&gid=18296377&nc=1

Dentro de los equipos empleados en la excavación mecánica en minería a cielo abierto destacan los “Highwall Miners”. Estos avanzados equipos mineros desempeñan un papel crucial en la extracción de minerales al excavar sobre paredes o muros verticales. Constituyen una combinación ingeniosa entre un minador continuo (CM) y la estructura exterior que proporciona el soporte necesario para el minador. Su aplicación se centra en la explotación de capas delgadas de carbón, yeso u otras rocas de dureza media a blanda, siendo especialmente idóneos para la minería de contorno.

Con la capacidad de extraer minerales de carbón con potencias de hasta 1,5 metros, estos equipos representan una solución eficiente y productiva para la industria minera. La versatilidad de estos dispositivos permite alcanzar grandes producciones, llegando hasta las 110,000 toneladas al mes, con tan solo cuatro personas operando el equipo.

Destacando entre sus características, el equipo Cat HW300 Highwall Miner demuestra su capacidad al trabajar en bermas de hasta 18 metros. Esta notable amplitud de acción amplía las posibilidades de extracción y facilita la labor minera en entornos desafiantes.

Figura 2. https://cinmine.com/products/highwall-miner-products/

Además de su eficiencia en la producción, estos equipos demuestran su valía al recuperar hasta un 70% del carbón presente en las capas explotadas, lo que contribuye significativamente a maximizar la rentabilidad de las operaciones mineras.

En resumen, estos equipos de vanguardia no solo destacan por su capacidad para extraer minerales en condiciones específicas, sino que también ofrecen eficiencia, productividad y rentabilidad, convirtiéndose en piezas clave para el éxito de la industria minera en la extracción de recursos en capas delgadas.

Os dejo a continuación algunos vídeos para que veáis el funcionamiento de estos equipos.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema Cluster-Drill de perforación rotopercutiva

Figura 1. https://www.epiroc.com/es-es/products/rock-drilling-tools/geotechnical-drilling-tools/large-diameter-drilling-solustions/cluster-drills

El sistema Cluster-Drill constituye un avance en la técnica de perforación rotopercutiva diseñado especialmente para perforaciones de gran diámetro. Este sistema está conformado por un conjunto de martillos en fondo (DTH) que resulta ideal para la construcción de chimeneas.

Los diámetros de las perforaciones abarcan desde 915 mm hasta 1778 mm. Este sistema permite alcanzar grandes profundidades, llegando hasta los 300 m en roca dura y abrasiva.

Además de posibilitar la perforación de cada martillo TDH de manera independiente, también incorpora un módulo rotativo que los contiene. Este módulo principal puede extenderse para recoger los detritos generados durante el proceso.

Figura 2. https://www.epiroc.com/es-es/products/rock-drilling-tools/geotechnical-drilling-tools/large-diameter-drilling-solustions/cluster-drills

Os paso un vídeo de Atlas Copco de este sistema de perforación.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ideas sobre la docencia de la asignatura de Procedimientos de Construcción

En el prólogo de obras anteriores, mencioné que la enseñanza de “Procedimientos de Construcción” es complicada, ya que implica instruir a futuros ingenieros civiles sobre la realización de obras. Este proceso abarca no solo las fases constructivas, sino también aspectos de gran relevancia, como el manejo de maquinaria y medios auxiliares, la seguridad y salud, el impacto ambiental de las obras, y sobre todo, conocimientos fundamentales en geotecnia, resistencia de materiales, mecánica, cálculo de estructuras, gestión de empresas, planificación de obras y economía. Todo este conjunto de conocimientos es esencial para tomar decisiones acertadas al seleccionar el mejor proceso constructivo para un proyecto específico. Además, debemos abordar toda esta información, considerando que la mayoría de los alumnos tienen poca o nula experiencia práctica en relación con el entorno físico de las obras.

Una dificultad adicional radica en la creación de un conjunto ordenado y coherente de problemas resueltos que no sean meramente teóricos, sino que se acerquen al mundo real de la profesión. Esta tarea resulta compleja en ocasiones, pues los procedimientos constructivos requieren conocimientos que abarcan casi todas las áreas de la ingeniería. En consecuencia, explicar esta asignatura en los primeros cursos de un grado universitario puede parecer arriesgado, debido a la amplia gama de conocimientos necesarios. Sin embargo, los planes de estudio a veces presentan estas incongruencias y desafíos en la enseñanza de esta materia.

Al final ha salido un volumen extenso, con una amplia variedad de problemas resueltos, que intenta abarcar todo el campo de conocimiento de los procedimientos de construcción, incluyendo la maquinaria y los medios auxiliares utilizados tanto en la ingeniería civil como en la edificación, e incluso en algunos casos, en la minería.

Esta colección forma parte del conjunto de materiales, libros y documentación que he elaborado como autor, complementando así el contenido teórico de la asignatura. Por esta razón, recomiendo al lector que acuda a manuales, libros o apuntes para reforzar la parte teórica de los problemas. No obstante, he incluido una extensa bibliografía que espero sea útil para este propósito. Además, me complace recomendar mi blog, que cuenta con
una trayectoria de casi 12 años y ha recopilado cerca de 2.000 artículos relacionados con aspectos de la ingeniería de la construcción. Puedes encontrarlo en el siguiente enlace: https://victoryepes.blogs.upv.es/.

El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Por último, y a pesar de que he puesto todo el empeño en resolver y revisar cada uno de los problemas, es posible que existan erratas o errores. Por ello, agradezco de antemano cualquier sugerencia o mejora que pueda ser útil para futuras ediciones. Espero sinceramente que este libro que tiene en sus manos contribuya a mejorar la calidad de la enseñanza de este tipo de asignaturas y que se convierta en una herramienta valiosa tanto para estudiantes como para profesionales. Su éxito en el aprendizaje y aplicación de los procedimientos de construcción es mi mayor deseo.

Valencia, a 25 de julio de 2023

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.