UPV



investigación


Publicada By  Víctor Yepes Piqueras - algoritmo, estructuras, hormigón, investigación, modelo matemático, optimización, Puentes, sostenibilidad    

Figura 1. Diseño tradicional de estructuras por prueba y error (Yepes, 2017)

El diseño de las estructuras se ha basado fundamentalmente en la experiencia del ingeniero proyectista. La topografía y las condiciones de tráfico, entre otros, determinan el diseño de un puente. A partir de ahí, las dimensiones de la sección transversal, el tipo de hormigón y la disposición general de las armaduras se definen atendiendo a la experiencia profesional y a las recomendaciones y criterios de diseño (Figura 1). A continuación, se ajustan el resto de variables, tras comprobar el cumplimiento de los estados límite último y de servicio. Si el proyectista quiere mejorar el diseño propuesto, normalmente se realiza un proceso de prueba y error, de forma que tras varios tanteos, se intenta reducir el consumo de materiales, y por tanto, el coste de la estructura. Frente a este planteamiento, los métodos heurísticos emplean técnicas basadas en la inteligencia artificial para seleccionar un diseño, analizar la estructura, controlar las restricciones y rediseñar la estructura modificando las variables hasta conseguir optimizar la función objetivo.

Cohn y Dinovitzer (1994) revisaron la investigación realizada en su momento en relación con la optimización de las estructuras y señalaron la brecha existente entre los estudios teóricos y la aplicación en problemas estructurales reales. Sarma y Adeli (1998) analizaron años más tarde los estudios relacionados con la optimización matemática de las estructuras, complementada más recientemente por Hare et al. (2013) que estudiaron la aplicación de los algoritmos heurísticos en la optimización estructural. Los algoritmos heurísticos difieren en cuanto a planteamiento y aplicabilidad de los métodos matemáticos exactos. De hecho, la optimización heurística resulta muy efectiva pues, aunque no garantiza la obtención del óptimo global del problema, proporciona soluciones casi óptimas en tiempos de cálculo razonables. Esta ventaja cobra importancia en la optimización de estructuras reales, donde el número de variables crece extraordinariamente de forma que desborda el tiempo de cálculo de los métodos exactos de optimización. Además, la programación matemática requiere el cálculo de gradientes de las restricciones, mientras que la optimización heurística incorpora las restricciones de diseño de una manera directa (Lagaros et al., 2006).

Las técnicas metaheurísticas utilizan estrategias de búsqueda para localizar óptimos locales en grandes espacios de soluciones de forma efectiva. Un ejemplo de ello son los Algoritmos Genéticos (Genetic Algorithms, GAs), que son procedimientos de búsqueda poblacionales inspirados en la evolución natural (Holland, 1975). Así, los GAs generan soluciones de alta calidad a través del cruce genético con otros individuos de una población y la mutación de algunas de sus características a lo largo de generaciones. Los padres suelen seleccionarse atendiendo a su aptitud (Coello, 1994) y los hijos mantienen ciertas características de sus padres. En cada generación sobreviven los hijos con mayores aptitudes. Además, para evitar la convergencia prematura del algoritmo, se utiliza un operador de mutación, al igual que ocurre en la Naturaleza, que cambia aleatoriamente de vez en cuando alguna de las características de las nuevas soluciones. Una variante a esta técnica son los Algoritmos Meméticos (Moscato, 1989), donde cada individuo de la nueva generación se mejora mediante una búsqueda local con el objetivo de mejorar los genes para que los padres obtengan mejores resultados en las siguientes generaciones. Esta técnica, por tanto, aplica los GAs a poblaciones de óptimos locales.

La inteligencia de enjambre (swarm intelligence) es una metaheurística poblacional empleada en los problemas de optimizacón. Estos algoritmos imitan el comportamiento colectivo de los sistemas descentralizados y auto-organizados, tales como algunas colonias de insectos, basándose en la interacción entre los vecinos, pero que siguen un patrón global. Los algoritmos de enjambre difieren en filosofía de los algoritmos genéticos porque utilizan la cooperación en lugar de la competencia (Dutta et al., 2011). Entre los algoritmos pertenecientes a este grupo, basados en el comportamiento biológico, destaca la optimización de colonias de hormigas (Ant Colony Optimization, ACO), la optimización de enjambre de partículas (Particle Swarm Optimization, PSO), las colonias de abejas artificiales (Artificial Bee Colony, ABC), la optimización en enjambres de luciérnagas (Glowworm Swarm Optimization, GSO), entre otros. ACO basa su estrategia en el comportamiento de las hormigas, que dejan un rastro de feromonas para encontrar alimento de forma efectiva (Colorni et al., 1991); PSO simula un sistema social simplificado (Kennedy y Eberhart, 1995); ABC imita el comportamiento alimentario forrajero de las abejas (Karaboga y Basturk, 2008); GSO imita un movimiento de las luciérnagas hacia los vecinos más brillantes (Krishnanand y Ghose, 2009).

Las metaheurísticas poblacionales presentan una amplia capacidad de búsqueda en paralelo y una fuerte robustez. Sin embargo, para mejorar la intensificación de la búsqueda, estos algoritmos suelen combinarse con otras heurísticas de búsqueda local. Esta hibridación consigue explotar la diversificación en la búsqueda poblacional con la intensificación de la búsqueda local. Luo y Zhang (2011) comprobaron que el algoritmo híbrido presenta una convergencia más rápida, una mayor precisión y es más efectivo en la optimización de problemas ingenieriles. Blum et al. (2011) estudiaron las ventajas de la hibridación de las metaheurísticas en el caso de la optimización combinatoria.

El recocido simulado (Simulated Annealing, SA), propuesto por Kirkpatrick et al. (1983), constituye uno de los algoritmos utilizados en la optimización estructural. Este algoritmo se basa en el fenómeno físico del proceso de recocido de los metales. La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. SA presenta la ventaja de admitir soluciones de peor calidad al principio de la búsqueda, lo cual permite eludir óptimos locales de baja calidad. La aceptación por umbrales (Threshold Accepting, TA), propuesto por Dueck y Scheuer (1990), tolera también opciones de peor calidad para eludir los óptimos locales. La diferencia entre SA y TA es que el criterio de aceptación de una solución peor es probabilista en el primer caso y determinista en el segundo. Los algoritmos genéticos se han hibridado con el recocido simulado en el diseño óptimo de puentes prefabricados de hormigón pretensado (Martí et al., 2013; Martí et al., 2016) y vigas en I de hormigón armado (RC) (Yepes et al., 2015a). Otras estrategias de hibridación también han demostrado su eficiencia con PSO (Shieh et al., 2011, Valdez et al., 2011, Wang et al., 2013) y ACO (Behnamian et al, 2009, Chen et al., 2012).

Qu et al. (2011) señalaron la lentitud en la convergencia de los algoritmos GSO; del mismo modo Zhang et al. (2010) apuntaron ciertas deficiencias de estos algoritmos en la búsqueda del óptimo global. Es por ello que se ha hibridado SA con GSO (García-Segura et al., 2014c, Yepes et al., 2015b) para combinar la diversificación de la búsqueda de GSO con la intensificación de la búsqueda de SA para encontrar de forma efectiva un óptimo de elevada calidad. García-Segura et al. (2014c) mostraron cómo un algoritmo híbrido de optimización de enjambre de luciérnagas (SAGSO) obtuvo resultados considerablemente mejores en cuanto a calidad y tiempo de cálculo. SAGSO superó al GSO en términos de eficiencia, precisión y convergencia. Sin embargo, se requiere una buena calibración para garantizar soluciones de alta calidad con un tiempo de cómputo corto.

La búsqueda de la armonía (Harmony Search, HS) constituye una heurística propuesta por Geem et al. (2001) inspirada en el jazz, donde se trata de armonizar u construir sucesiones de acordes razonables. Las notas, los instrumentos y la mejor armonía representan los valores, las variables y el óptimo global. Alberdi y Khandelwal (2015) compararon ACO, GA, HS, PSO, SA y TS en la optimización del diseño de marcos de acero, comprobando que los mejores resultados se obtenían con HS. La búsqueda de la armonía se ha utilizado para optimizar columnas rectangulares de hormigón armado (de Medeiros y Kripka, 2014), forjados compuestos (Kaveh y Shakouri Mahmud Abadi, 2010) y pórticos planos de hormigón armado (Akin y Saka, 2015). Alia y Mandava (2011) recogieron en su trabajo las variantes utilizadas para hibridar con HS. García-Segura et al. (2015) emplearon un algoritmo de búsqueda de la armonía hibridada con la aceptación por umbrales para encontrar diseños óptimos sostenibles de puentes peatonales de hormigón postesado.

La optimización de los puentes atrajo la atención de los ingenieros a partir de la década de los años 70, incluyendo los puentes viga de acero, (Wills, 1973), el refuerzo de los puentes losa (Barr et al., 1989), los puentes viga de hormigón pretensado (Aguilar et al., 1973, Lounis y Cohn, 1993), y los puentes en cajón postesados construidos “in situ” (Bond, 1975; Yu et al., 1986). Desde la aparición de la inteligencia artificial, se ha puesto mayor énfasis en el uso de técnicas de optimización heurística para optimizar las estructuras. Srinivas y Ramanjaneyulu (2007) usaron redes neuronales artificiales y algoritmos genéticos para optimizar el coste de un puente de vigas en T. Rana et al. (2013) propusieron una optimización evolutiva para minimizar el coste de una estructura de puente continuo de hormigón pretensado de dos tramos. Martí et al. (2013) implementaron un algoritmo de recocido simulado híbrido para encontrar las soluciones más económicas de puentes prefabricados de hormigón pretensado de vigas artes. El uso de refuerzos de fibra de acero en ese tipo de puente se estudió posteriormente con algoritmos meméticos (Martí et al., 2015). Se propusieron algoritmos genéticos para optimizar las cubiertas poliméricas reforzadas con fibras híbridas y los puentes atirantados (Cai y Aref, 2015).

También se han optimizado otro tipo de estructuras con algoritmos heurísticos, como los forjados prefabricados (de Albuquerque et al., 2012), columnas de hormigón armado (Park et al., 2013; Nigdeli et al., 2015), columnas de acero (Kripka y Chamberlain Pravia, 2013), marcos espaciales de acero (Degertekin et al., 2008), marcos de hormigón armado (Camp y Huq, 2013), pórticos de hormigón armado (Payá-Zaforteza et al., 2010), vigas en I de hormigón armado (García-Segura et al., 2014c; Yepes et al., 2015a), pórticos de carreteras (Perea et al., 2008), pilas altas de viaductos (Martínez et al., 2011; 2013), muros de contención (Gandomi et al., 2015; Pei y Xia, 2012; Yepes et al., 2008, 2012; Molina-Moreno et al., 2017a), zapatas de hormigón armado (Camp y Assadollahi, 2013; Camp y Huq, 2013), bóvedas de pasos inferiores en carreteras (Carbonell et al., 2011) y estribos de puentes (Luz et al., 2015).

Referencias:

  • Aguilar, R.J.; Movassaghi, K.; Brewer, J.A.; Porter, J.C. (1973). Computerized optimization of bridge structures. Computers & Structures, 3(3), 429–442.
  • Akin, A.; Saka, M.P. (2015). Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions. Computers & Structures, 147, 79–95.
  • Alberdi, R.; Khandelwal, K. (2015). Comparison of robustness of metaheuristic algorithms for steel frame optimization. Engineering Structures, 102, 40–60.
  • Alia, O.M.; Mandava, R. (2011). The variants of the harmony search algorithm: an overview. Artificial Intelligence Review, 36(1), 49–68.
  • Barr, A.S.; Sarin, S.C.; Bishara, A.G. (1989). Procedure for structural optimization. ACI Structural Journal, 86(5), 524–531.
  • Behnamian, J.; Zandieh, M.; Fatemi Ghomi, S.M.T. (2009). Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with Applications, 36(6), 9637–9644.
  • Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135–4151.
  • Bond, D. (1975). An examination of the automated design of prestressed concrete bridge decks by computer. Proceedings of the Institution of Civil Engineers, 59(4), 669–697.
  • Cai, H.; Aref, A.J. (2015). A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges. Structural and Multidisciplinary Optimization, 52(3), 583–594.
  • Camp, C.V.; Assadollahi, A. (2013). CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Structural and Multidisciplinary Optimization, 48(2), 411–426.
  • Camp, C.V.; Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363–372.
  • Carbonell, A.; González-Vidosa, F.; Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159.
  • Chen, S.M.; Sarosh, A.; Dong, Y.F. (2012). Simulated annealing based artificial bee colony algorithm for global numerical optimization. Applied Mathematics and Computation, 219(8), 3575–3589.
  • Coello, C. (1994). Uso de Algoritmos Genéticos para el Diseño Óptimo de Armaduras. In Congreso Nacional de Informática “Herramientas Estratégicas para los Mercados Globales”, pp. 290–305. Fundación Arturo Rosenblueth, México, D.F.
  • Cohn, M.Z.; Dinovitzer, A.S. (1994). Application of Structural Optimization. Journal of Structural Engineering, 120(2), 617–650.
  • Colorni, A.; Dorigo, M.; Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceeding of ECALEuropean Conference on Artificial Life, pp. 134–142. Paris: Elsevier.
  • de Albuquerque, A.T.; El Debs, M.K.; Melo, A.M.C. (2012). A cost optimization-based design of precast concrete floors using genetic algorithms. Automation in Construction, 22, 348–356.
  • de Medeiros, G.F. Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59, 185–194.
  • Degertekin, S.O.; Saka, M.P.; Hayalioglu, M.S. (2008). Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm. Engineering Structures, 30(1), 197–205.
  • Dueck, G.; Scheuer, T. (1990). Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161–175.
  • Dutta, R.; Ganguli, R.; Mani, V. (2011). Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Materials and Structures, 20(10), 105018.
  • Gandomi, A.H.; Kashani, A.R.; Roke, D.A.; Mousavi, M. (2015). Optimization of retaining wall design using recent swarm intelligence techniques. Engineering Structures, 103, 72–84.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014b). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014c). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Geem, Z.W.; Kim, J.H.; Loganathan, G.V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.
  • Hare, W.; Nutini, J.; Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19–28.
  • Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA.
  • Karaboga, D.; Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.
  • Kaveh, A.; Shakouri Mahmud Abadi, A. (2010). Cost optimization of a composite floor system using an improved harmony search algorithm. Journal of Constructional Steel Research, 66(5), 664–669.
  • Kennedy, J.; Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 – International Conference on Neural Networks, Vol. 4, pp. 1942–1948. IEEE.
  • Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.
  • Kripka, M.; Chamberlain Pravia, Z.M. (2013). Cold-formed steel channel columns optimization with simulated annealing method. Structural Engineering and Mechanics, 48(3), 383–394.
  • Krishnanand, K.N.; Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93–119.
  • Lagaros, N.D.; Fragiadakis, M.; Papadrakakis; M.; Tsompanakis, Y. (2006). Structural optimization: A tool for evaluating seismic design procedures. Engineering Structures, 28(12), 1623–1633.
  • Lounis, Z.; Cohn, M.Z. (1993). Optimization of precast prestressed concrete bridge girder systems. PCI Journal, 38(4), 60–78.
  • Luo, Q.F.; Zhang, J.L. (2011). Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Constrained Engineering Problem. Advanced Materials Research, 204-210, 823–827.
  • Luz, A.; Yepes, V.; González-Vidosa, F.; Martí, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352.
  • Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114.
  • Martínez-Martín, F. J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6), 723–740.
  • Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432.
  • Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017a). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134, 205-216.
  • Molina-Moreno, F.; Martí, J.V.; Yepes, V. (2017b). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884.
  • Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program (report 826). Caltech, Pasadena, California, USA.
  • Nigdeli, S.M.; Bekdas, G.; Kim, S.; Geem, Z. W. (2015). A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Structural Engineering and Mechanics, 54(6), 1097–1109.
  • Park, H.; Kwon, B.; Shin, Y.; Kim, Y.; Hong, T.; Choi, S. (2013). Cost and CO2 emission optimization of steel reinforced concrete columns in high-rise buildings. Energies, 6(11), 5609–5624.
  • Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610.
  • Payá-Zaforteza, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693–704.
  • Payá-Zaforteza, I.; Yepes, V.; Hospitaler, A.; González-Vidosa, F. (2009). CO2-optimization of reinforced concrete frames by simulated annealing. Engineering Structures, 31(7), 1501–1508.
  • Pei, Y.; Xia, Y. (2012). Design of Reinforced Cantilever Retaining Walls using Heuristic Optimization Algorithms. Procedia Earth and Planetary Science, 5, 32–36.
  • Qu, L.; He, D.; Wu, J. (2011). Hybrid Coevolutionary Glowworm Swarm Optimization Algorithm with Simplex Search Method for System of Nonlinear Equations. Journal of Information & Computational Science, 8(13), 2693– 2701.
  • Rana, S.; Islam, N.; Ahsan, R.; Ghani, S.N. (2013). Application of evolutionary operation to the minimum cost design of continuous prestressed concrete bridge structure. Engineering Structures, 46, 38–48.
  • Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.
  • Shieh, H.L.; Kuo, C.C.; Chiang, C.M. (2011). Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Applied Mathematics and Computation, 218(8), 4365–4383.
  • Srinivas, V.; Ramanjaneyulu, K. (2007). An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks. Advances in Engineering Software, 38(7), 475–487.
  • Valdez, F.; Melin, P.; Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing, 11(2), 2625–2632.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • Wills, J. (1973). A mathematical optimization procedure and its application to the design of bridge structures. Wokingham, Berkshire, United Kingdom.
  • Yepes, V.; Alcalá, J.; Perea, C.; González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821–830.
  • Yepes, V.; Díaz, J.; González-Vidosa, F.; Alcalá, J. (2009). Caracterización estadística de tableros pretensados para carreteras. Revista de la Construcción, 8(2), 95-109.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yu, C.H.; Gupta, N.C. Das; Paul, H. (1986). Optimization of prestressed concrete bridge girders. Engineering Optimization, 10(1), 13–24.
  • Zhang, J.; Zhou, G.; Zhou, Y. (2010). A New Artificial Glowworm Swarm Optimization Algorithm Based on Chaos Method. In B. Cao, G. Wang, S. Chen, & S. Guo (Eds.), Quantitative Logic and Soft Computing 2010, Vol. 82, pp. 683–693. Berlin, Heidelberg: Springer Berlin Heidelberg.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

16 abril, 2018
 

Publicada By  Víctor Yepes Piqueras - ingeniería civil, investigación, recursos humanos, sostenibilidad, toma de decisiones    

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production (primer decil del JCR), de la editorial ELSEVIER, en la que revisamos el estado del arte de la investigación realizada a nivel internacional sobre la aplicación de las técnicas de valoración multicriterio al impacto social de las infraestructuras. El tema no es nada sencillo, puesto que los impactos sociales son mucho más difíciles de valorar que los impactos económicos o medioambientales. Nos referimos a aspectos como el empleo, el bienestar social, la salud pública, la productividad, el desarrollo regional, la equidad intergeneracional, la igualdad social, la educación, etc. Además, hay que tener en cuenta que, al igual que una piedra cae en una balsa de agua, las ondas generadas (el impacto) presentan un estado transitorio (corto plazo) y otro estacionario (largo plazo). A veces es difícil conjugar el corto y el largo plazo en la evaluación de la sostenibilidad social.

La editorial ELSEVIER nos permite la distribución gratuita del artículo hasta el 26 de mayo de 2018. Por tanto, os paso el enlace para que os podáis descargar este artículo: https://authors.elsevier.com/c/1Wr0s3QCo9R0Il

Referencia: 

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. https://doi.org/10.1016/j.jclepro.2018.03.022

Abstract:

Nowadays multi-criteria methods enable non-monetary aspects to be incorporated into the assessment of infrastructure sustainability. Yet evaluation of the social aspects is still neglected and the multi-criteria assessment of these social aspects is still an emerging topic. Therefore, the aim of this article is to review the current state of multi-criteria infrastructure assessment studies that include social aspects. The review includes an analysis of the social criteria, participation and assessment methods. The results identify mobility and access, safety and local development among the most frequent criteria. The Analytic Hierarchy Process and Simple Additive Weighting methods are the most frequently used. Treatments of equity, uncertainty, learning and consideration of the context, however, are not properly analyzed yet. Anyway, the methods for implementing the evaluation must guarantee the social effect on the result, improvement of the representation of the social context and techniques to facilitate the evaluation in the absence of information.

Keywords:

Infrastructure
Multi-criteria
Social sustainability
Equity
Stakeholders
Uncertainty

 

Highlights:

  • Review of multi-criteria assessment methods of infrastructure social sustainability.
  • Identify trends of social criteria considered.
  • Identify trends of participation of stakeholders.
  • Identify trends of multi-criteria methods.
  • Identify trends of consideration of equity, context and social learning.

 

 

Publicada By  Víctor Yepes Piqueras - carreteras, ciclo de vida, investigación, optimización, proyectos, sostenibilidad, toma de decisiones    

Hoy 5 de abril de 2018 se celebra el día internacional del mantenimiento de carreteras (International Road Maintenance Day). Bajo la etiqueta #IRMD2018 y bajo el lema “Conservar las carreteras es preservar el medio ambiente” muchos colegas e investigadores están aportando su conocimiento e ideas para concienciar de la importancia de conservar nuestras infraestructuras, especialmente las carreteras.

Pues también quiero colaborar con mi granito de arena. A continuación tenéis recopilados los posts y trabajos que sobre conservación de pavimentos hemos desarrollado en nuestro grupo de investigación. Como podréis ver, nuestro grupo se ha especializado en la optimización heurística de todo tipo de infraestructuras (puentes, estructuras de hormigón, pavimentos, etc.), incluyendo la toma de decisiones, el análisis del ciclo de vida y la sostenibilidad social y ambiental. Si alguien está interesado en alguno de estos artículos, y no lo encuentra, que no dude en pedírmelo que se lo mando. Espero que os resulte útil y de interés.

 

Referencias:

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production (accepted, in press).

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004

PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure.Journal of Construction Engineering and Management ASCE, 142(5):  05015020. DOI: 10.1061/(ASCE)CO.1943-7862.0001099.

TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102. http://www.sciencedirect.com/science/article/pii/S0959652617301142

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07

TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 

TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages, http://dx.doi.org/10.1155/2014/524329  (link)

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: How to integrate economic, technical and environmental aspects in decision-making. Transportation Research Board (TRB) 94th Annual Meeting, January 11-15, Washington, D.C., pp. 1-13.

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; OSORIO, A.; VIDELA, C. (2014). Optimización heurística para la gestión de infraestructuras: aplicación a una red de pavimentos urbanos en Chile. 11er Congreso Internacional PROVIAL, 20-14 octubre, Valdivia (Chile), 14 pp.

TORRES-MACHÍ, C.; YEPES, V.; PELLICER, V.; CHAMORRO, A. (2014). Application of simple and hybrid local search heuristic for the long-term optimization of pavement maintenance strategies at the network level. Transportation Research Board (TRB) 93rd Annual Meeting. 12-16 January, Washington D.C.

TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2013). Optimization and prioritization methods for pavement network management. Transportation Research Board 92st Annual Meeting, Washington, D.C., 13-17 January. Paper 13-5057, pp. 1-14.

TORRES-MACHÍ, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2013). Heuristic optimization model for infrastructure asset management. In: Bielza et al. (Eds.): Proceedings fo 15th Conference of the Spanish Association for Artificial Intellingence, CAEPIA 2013, Lecture Notes in Computer Science, 8109, pp. 300-309. Springer, Madrid, Spain, September 17-20.

TORRES-MACHÍ, C.; PELLICER, E.; YEPES, V.; PICORNELL, M. (2013). The impact of the economic crisis in the construction industry from the perspective of graduate students. 2nd Cyprus International Conference on Educational Researches, 13-15 february, Atatürk Teacher Training Academy, Lefkosa, Turkish Republic of Northern Cyprus.

Publicada By  Víctor Yepes Piqueras - ciclo de vida, costas, costes, estructuras, hormigón, investigación, Puentes, sostenibilidad    

https://www.ailladearousa.com

Pocas veces se incorporan en los proyectos de puentes actuales las variables sociales como factores determinantes de su diseño. Tampoco se dedica la atención suficiente al análisis del coste del ciclo de vida para evaluar la mejor alternativa posible de diseño. Considerar en nuestros proyectos este tipo de variables podría reducir, por ejemplo, en un 60% los costes de mantenimiento. También se constataría el hecho de que incrementar solamente 5 mm el recubrimiento de las armaduras de las estructuras de hormigón podría reducir el coste del mantenimiento en un 40%. Un ejemplo de la aplicación de este tipo de metodologías es la que nos acaban de publicar en la revista Sustainability. Allí se ha analizado el coste del ciclo de vida de las medidas de prevención aplicado a un puente de hormigón postesado expuesto al ataque de clorhídricos. Para ello se ha elegido el puente de la Isla de Arosa, en Galicia (España). Os dejo el artículo completo y la referencia.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 .

Descargar (PDF, 1.87MB)

Publicada By  Víctor Yepes Piqueras - innovación, investigación, universidad    

Una de las labores más importantes de cualquier universidad consiste en su labor investigadora, de innovación tecnológica y de transferencia. A esa labor no es ajena la Universitat Politècnica de València. Sin embargo, la conexión fluida entre las empresas y los centros tecnológicos y universitarios a veces no es tan fácil. Por tanto, en este post voy a comunicar la labor que realiza nuestra universidad. Espero que os sea de interés.

Quizá el enlace más interesante que os puedo dejar es un buscador de toda la información disponible en la UPV. El enlace es el siguiente: https://aplicat.upv.es/exploraupv/

Pero entrando ya en detalle, en primer lugar, os dejo una presentación sobre la actividad de la UPV en I+D+i y transferencia de conocimiento, cómo acceder a la oferta de la UPV y sus líneas de actividad en I+D.

Descargar (PDF, 1.07MB)

A continuación, os dejo un vídeo institucional donde se presenta la labor innovadora de la UPV.

 

Por último, os dejo una presentación donde se recogen los resultados en I+D+i y transferencia referidos al último año disponible, 2016.

Descargar (PDF, 2.51MB)

Publicada By  Víctor Yepes Piqueras - ciclo de vida, estructuras, hormigón, investigación, optimización, prefabricación, sostenibilidad, toma de decisiones    

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Publicada By  Víctor Yepes Piqueras - ciencia, investigación, modelo matemático, universidad    

Carlos A. Brebbia (1948-2018)

Tengo que hacerme eco del fallecimiento del profesor Carlos A. Brebbia (1948-2018), hecho acaecido el pasado sábado 3 de marzo de 2018. Tuve la oportunidad de coincidir con él en varios congresos donde me invitó a formar parte del Comité Científico, como el “International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI“, organizados por Wessex Institute. Junto con el Profesor Santiago Hernández y los profesores Kravanja y De Wilde, formaban parte de la presidencia de estos congresos. Os dejo a continuación un breve obituario sobre su persona. Descanse en paz.

Carlos was born in Rosario, Argentina, where he completed his first engineering degree, after being educated at Military Colleges in Santa Fe and Buenos Aires. He spent two years after graduation as part of a small team setting up an Institute of Applied Mechanics. Following this he registered at the University of Southampton in England for a higher degree, arranging to carry out his research partly at MIT.  This experience set up the basis for his long and close association with the USA.

After obtaining his PhD at Southampton University he worked for the Central Electricity Research Laboratories in the UK, a leading research establishment at the time. He left the Laboratories to take up an academic position at the University of Southampton where he rose from Lecturer to Senior Lecturer and Reader. During his time at Southampton he took leave to become Visiting Professor at many other Universities, including an academic year at Princeton. After having been appointed Full Professor of Engineering at the University of California, Irvine, he decided to resign his position and return to the UK to set up the Wessex Institute, of which he was the Founder and Director.

Carlos is renowned throughout the world as the originator of the Boundary Element Method, a technique that generates important research work at the Wessex Institute. He has written many scientific papers, been author of 14 books, co-author of numerous volumes and editor or co-editor of over 500. He also published two non-scientific books, “The New Forest. A Personal View” and “Patagonia, a forgotten Land”.  A book on the Paraguayan War in the 19th Century was a work in progress at the time of his death.

He founded several successful international Journals including the International Journals of Safety and Security, Design & Nature and Ecodynamics, Sustainable Development and Planning, Computational Methods and Experimental Measurements, Energy Production and Management, Heritage Architecture, Transport Development and Integration, and the new International Journal of Environmental Impacts.

He established two International prizes, the highly regarded Prigogine Medal for Ecological Systems Research, co-sponsored by the University of Siena; and the George Green Medal, supported by Elsevier and co-sponsored by the University of Mississippi.

Carlos ran a successful WIT programme of international scientific conferences in different locations throughout the world. He helped the Institute to develop academic links with first class institutions around the world, which has resulted in many more research programmes and collaborative projects.

Carlos held many special honours, including the Medaille de la Ville de Paris, Echelon Argent; Medaille of the Masonnet Foundation, University of Liege, Belgium; Fellow of the Institution of Mechanical Engineers in the UK; Fellow, and Founding President of the American Society of Civil Engineers UK Chapter; Honorary PhD at the University of Bucharest; Fellow of the Royal Society of Arts;and Member of the European Academy of Sciences and Arts.

In parallel with his academic career, Carlos was a highly successful entrepreneur and founded the Computational Mechanics International Ltd group of companies in 1976. This group’s activities have grown to include software development, engineering consultancy, property investment and publishing. The group works closely with WIT and is responsible for the publishing programme of the Institute which includes, in addition to the conference proceedings, a series of monographs and edited books by some of the foremost scientists in the world.

Whilst we grieve the enormous loss of our Founder and Chairman, whose hard work, determination and achievements during his career are truly inspirational, we know that his earnest desire was for all that he has worked tirelessly to build over many years, to continue to flourish. To this we are firmly committed and so we welcome the continued and future collaboration of our friends and colleagues around the world.

Carlos is survived by his wife, Carolyn, his son Alexander and daughter Isabel, and six grandchildren.

5 marzo, 2018
 

Publicada By  Víctor Yepes Piqueras - ciclo de vida, estructuras, hormigón, ingeniería civil, innovación, investigación, residuos, sostenibilidad, toma de decisiones    

La Comisión Mundial sobre el Medio Ambiente y el Desarrollo “World Commission on Environment and Development” (WCED) propuso mantener a largo plazo los recursos necesarios para satisfacer las necesidades futuras (Butlin, 1989). Además, se señaló que para conseguir un desarrollo sostenible se debía mantener un equilibrio entre los pilares económicos, ambientales y sociales. Desde entonces, los desafíos para conseguir un desarrollo sostenible se han llevado al campo de la construcción en diferentes líneas de investigación. La construcción constituye uno de los principales sectores emisores de gases de efecto invernadero (Liu et al., 2013). La industria de la construcción, junto con sus industrias auxiliares, pasa por ser uno de los mayores consumidores de recursos naturales, tanto renovables como no renovables, que está alterando negativamente el medio ambiente. Agota 2/5 partes de los áridos y 1/4 de la madera, y consume el 40 % de la energía total y el 16 % de agua al año (Lippiatt, 1999; Chong et al., 2009). El consumo de materiales crece constantemente, con más de 23 mil millones de toneladas de hormigón producido anualmente (Schokker, 2010; WBCSD, 2006). En 2010, de acuerdo con la International Cement Review, la producción mundial de cemento se elevó a alrededor de 3,3 millones de toneladas/año, lo que significa un aumento más del 100% en casi 10 años. La fabricación de cemento Portland genera grandes cantidades de CO2 debido a las altas demandas de energía necesarias para la fabricación y calcinación de la piedra caliza. La producción mundial de cemento llegó a 1,6 mil millones de toneladas/año en 2001, lo que corresponde a aproximadamente el 7 % de la cantidad mundial de dióxido de carbono liberado a la atmósfera (Bremner, 2001). Otros estudios indican que la contribución de la industria cementera a las emisiones de gases de efecto invernadero supera el 5% del total (Worrell et al., 2001). En Australia, para mantener la demanda en la construcción, se necesitan cada año aproximadamente 30 millones de toneladas de productos, más del 56 % de esta cantidad es hormigón, y el 6%, acero (Walker-Morison et al., 2007). En 2001, España tuvo la mayor tasa de consumo de hormigón en Europa, con 1,76 m3 de hormigón per cápita por año (ECO-SERVE, 2004). En 2007, la producción de clinker alcanzó alrededor de 55 millones de toneladas en España. Sin embargo, este número se redujo a 14,1 millones de toneladas en 2013 como consecuencia de la crisis financiera (Oficemen, 2016).

Existen recomendaciones para reducir el impacto ambiental de las estructuras de hormigón (fib, 2012). La citada guía considera el ciclo completo de las fases del ciclo de vida, de la cuna a la tumba. La correcta selección de las materias primas, así como los aditivos y adiciones, constituye una de las claves para reducir el impacto ambiental. Otra forma de reducir los impactos pasa por el uso de procesos más respetuosos con el medio ambiente en la producción y el transporte del hormigón. En esta guía también se habla de optimizar estructuras basándose en indicadores ambientales y de desempeño. Por último, concluye que las estructuras deben optimizarse comparando diferentes alternativas y teniendo en cuenta los indicadores ambientales, especialmente las emisiones de CO2, pues pasa por ser uno de los factores más importantes para evaluar el impacto ambiental. Además, fib (2012) indica cómo la consideración del ciclo de vida completo de una estructura antes de iniciar su construcción puede conseguir reducciones significativas de CO2.

Por tanto, la sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento. Las investigaciones se centran en proporcionar recomendaciones para seleccionar materiales estructurales basados en indicadores económicos, ambientales y de constructibilidad (Zhong & Wu, 2015), utilizando hormigón y acero reciclado (Collins, 2010, Yellishetty et al., 2011), empleando materiales novedosos como cementos con baja huella de carbono y adiciones como substitutos del clínker (García-Segura et al., 2014a; Gartner, 2004), evaluando las emisiones del ciclo de vida de las estructuras de hormigón (Barandica et al., 2013; Tae et al., 2011), reduciendo las emisiones de CO2 de la construcción (2003), optimizando el proceso de producción de cemento (Castañón et al., 2015), estimando la energía consumida en los proyectos de construcción (Wang y Shen, 2013; Wang et al., 2012) e identificando la mejor planificación del mantenimiento (Liu y Frangopol, 2005, Yang et al., 2006), entre otros. En las referencias también hemos dejado alguno de nuestros trabajos en este sentido.

Referencias:

  • Barandica, J.M.; Fernández-Sánchez, G.; Berzosa, Á.; Delgado, J.A.; Acosta, F.J. (2013). Applying life cycle thinking to reduce greenhouse gas emissions from road projects. Journal of Cleaner Production, 57, 79–91.
  • Bremner, T.W. (2001). Environmental aspects of concrete: problems and solutions. In: Proceedings of first all-Russian conference on concrete and reinforced concrete, Moscow, Russia.
  • Butlin, J. (1989). Our common future. By World commission on environment and development. (London, Oxford University Press, 1987, pp.383). Journal of International Development, 1(2), 284–287.
  • Castañón, A.M.; García-Granda, S.; Guerrero, A.; Lorenzo, M.P.; Angulo, S. (2015). Energy and environmental savings via optimisation of the production process at a Spanish cement factory. Journal of Cleaner Production, 98, 47–52.
  • Chong, W.K.; Kumar, S.; Haas, C.T.; Beheiry, S.M.A.; Coplen, L.; Oey, M. (2009). Understanding and interpreting baseline perceptions of sustainability in construction among civil engineers in the United States. Journal of Management in Engineering, 25(3):143–154.
  • Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.
  • ECO-SERVE. (2004). Baseline report on sustainable aggregate and concrete industries in Europe. European Commission, Hellerup.
  • fib. International Federation for Structural Concrete. Task Group 3.8, T. for green concrete structures. (2012). Guidelines for green concrete structures. International Federation for Structural Concrete. Task Group 3.8, Technologies for green concrete structures.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498.
  • Lippiatt, B.C. (1999). Selecting cost effective green building products: BEES approach. Journal of Construction Engineering and Management, 125:448–455.
  • Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.
  • Liu, S.; Tao, R.; Tam, C.M. (2013). Optimizing cost and CO2 emission for construction projects using particle swarm optimization. Habitat International, 37:155–162.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Oficemen. (2012). Annual report of Spanish cement sector 2016. Annual report of Spanish cement sector 2016. Retrieved from https://www.oficemen.com/reportajePag.asp?id_rep=1619
  • Schokker A.J. (2010). The sustainable concrete guide: strategies and examples. 1 ed. U.S.G.C. Council; 2010. Michigan: U.S. Green Concrete Council.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5), 05015020.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2017a). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53.
  • Sierra, L.A.; Yepes, V.; Pellicer, E. (2017b). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review ,67:61-72. .
  • Tae, S.; Baek, C.; Shin, S. (2011). Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete. Environmental Impact Assessment Review, 31(3), 253–260.
  • Walker-Morison, A.; Grant, T.; McAlister, S. (2007). The environmental impact of building materials. Environment design guide. PRO 7.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • World Business Council for Sustainable Development (WBCSD) (2006). Cement Industry Energy and CO2 Performance: Getting the Numbers Right; Geneva: World Business Council for Sustainable Development, (WBCSD).
  • Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26, 303–329.
  • Yang, S.I.; Frangopol, D.M.; Kawakami, Y.; Neves, L. C. (2006). The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs. Reliability Engineering & System Safety, 91(6), 698–705.
  • Yellishetty, M.; Mudd, G.M.; Ranjith, P.G.; Tharumarajah, A. (2011). Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental Science & Policy, 14(6), 650–663.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.
  • Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140, 1037-1048.
  • Zhong, Y.; Wu, P. (2015). Economic sustainability, environmental sustainability and constructability indicators related to concrete- and steel-projects. Journal of Cleaner Production, 108, 748–756.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

23 febrero, 2018
 

Publicada By  Víctor Yepes Piqueras - algoritmo, estructuras, hormigón, investigación, optimización, Puentes, sostenibilidad, toma de decisiones    

Parece que fue ayer, pero este 2018 cumplimos 10 años desde que nos publicaron el primer artículo internacional relacionado con la optimización heurística de estructuras de hormigón. Sin embargo, todo empezó un poco antes, en el 2002, año en que defendí mi tesis doctoral denominada “Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW”. Con ella pude ponerme al día con los procedimientos de optimización heurística más prometedores en ese momento. Sin embargo, pronto me dí cuenta de las posibilidades que tenía aplicar estos algoritmos a la optimización de problemas reales de ingeniería, en particular las estructuras de hormigón.

Por tanto, en septiembre del año 2002 fue el inicio del Grupo de Investigación de Procedimientos de Construcción, Optimización y Análisis de Estructuras. La iniciativa de creación del grupo correspondió a los profesores González-Vidosa y Yepes Piqueras. El primero de ellos, con una amplia experiencia en la investigación y la práctica profesional de las estructuras de hormigón armado y pretensado; y el segundo, con una experiencia reciente en el campo de la optimización heurística en la ingeniería. A partir de ese momento empezaron a gestarse las primeras tesis doctorales, las primeras de las cuales se defendieron en el año 2007, correspondientes a Cristian Perea de Dios y a Ignacio Javier Payá Zaforteza. En el año 2008 se publicaron nuestros tres primeros artículos: Perea et al. (2008), Payá et al. (2008) y Yepes et al. (2008).

En aquellos momentos, las preguntas a las que pretendíamos dar una solución fueron las siguientes:

  • ¿Es capaz la inteligencia artificial de diseñar automáticamente las estructuras?
  • ¿La inteligencia artificial podrá suplantar la experiencia del ingeniero en el prediseño de las estructuras?
  • ¿Se pueden utilizar técnicas procedentes del campo de la Investigación Operativa en la optimización de las estructuras?
  • ¿Puede alcanzarse una economía importante en los costes de construcción de las estructuras sin merma de la calidad?
  • ¿Aparecerán nuevas patologías si los módulos de optimización automática empiezan a implantarse de forma habitual en los paquetes de cálculo comerciales?
  • ¿Deberían revisarse las normas de cálculo si se extiende el cálculo optimizado de estructuras?
  • ¿Deberán tenerse en cuenta estados límites no considerados hasta ahora en la comprobación de las estructuras optimizadas?
  • ¿Pueden optimizarse varios criterios a la vez? ¿Cómo son las estructuras de bajo coste y alta seguridad?
  • ¿Es posible valorar el coste de la seguridad integral de una estructura?
  • ¿Podemos diseñar estructuras de bajo coste y que a la vez consuman poco CO2 y energía para hacer una ingeniería sostenible?
  • ¿Se puede aplicar el concepto de “huella ecológica” al diseño de las estructuras?

 

Fueron nuestros tres primeros artículos internacionales, pero a fecha de hoy ya se han publicado más de 60 y dirigido una quincena de tesis doctorales, así como una decena de proyectos de investigación. La lista la podéis ver en el blog: http://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Referencias:

PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688.

PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610.

YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated AnnealingEngineering Structures30(3): 821-830.

 

20 febrero, 2018
 

Publicada By  Víctor Yepes Piqueras - Docencia, innovación, investigación, universidad    

Los objetivos que los poderes públicos deberían asignar a la Universidad, están en consonancia con las ideas enunciadas, ya hace años, por Ortega y Gasset cuando afirmó que las tres misiones fundamentales de la Universidad son:

  1. Formar a los profesionales facultativos que la sociedad demanda.
  2. Ser depositaria y difusora de la cultura de la época, y,
  3. Producir nueva ciencia y formar científicos.

A estas misiones habría que añadir algunos planteamientos recogidos en nuestra legislación como la Ley Orgánica 4/2007 de Universidades, donde se indica que “las universidades, además de un motor para el avance del conocimiento, deben ser un motor para el desarrollo social y económico del país. Junto a la investigación básica, la universidad deberá impulsar la transferencia al sector productivo de los resultados de su investigación en coordinación y complementariedad con los demás agentes del sistema de ciencia y tecnología”. Esta misma Ley indica que “la investigación científica es fundamento esencial de la docencia y una herramienta primordial para el desarrollo social a través de la transferencia de sus resultados a la sociedad”.

La investigación, en consecuencia, debe estar presente en las actividades que se realicen en la Universidad. En cuanto a su necesidad para formar a los profesionales facultativos que la sociedad demanda es importante remarcar la relación entre la docencia y la investigación. Si los planteamientos sobre la importancia de la investigación para la docencia son válidos para la enseñanza de primer y segundo ciclo, cobran una especial relevancia para el tercer ciclo y los cursos de postgrado. Dado que una de las misiones del tercer ciclo es formar científicos, poco cabe decir si el profesor no investiga. Con respecto a los cursos de postgrado cabe indicar dos aspectos: en primer lugar, en un contexto de praxis y medios tecnológicos con una rápida evolución en el tiempo, el profesional deberá reciclarse varias veces a lo largo de su vida; por tanto, si la Universidad asume el reto de que ese reciclaje pase por sus aulas, deberá tener un profesorado que conozca la ciencia y la tecnología que se produce en su tiempo, y ello solo se logra con la investigación; en segundo lugar, el nivel de especialización de los contenidos docentes de este tipo de cursos, obliga al docente que los imparta a practicar la investigación. Respecto a la segunda de las misiones, ser depositaria y difusora de la cultura de la época, la labor de la Universidad consiste en la generación y captación de las nuevas ideas y conocimientos, su incorporación a la cultura propia y su difusión a la sociedad. Ello exige grupos de investigación y profesorado de primer nivel que estén en contacto con la ciencia y la tecnología de la época. Para la asimilación de la cultura, los grupos de investigación presentan cualidades idóneas al conocer la ciencia y practicar sus métodos, la difusión va implícita en la docencia.

Lo anteriormente comentado viene a remarcar la idea de que la docencia y la investigación no pueden ser actividades antagónicas para el profesor universitario. Todo lo contrario, son complementarias entre sí y, por ello, conviene potenciar y racionalizar ambos aspectos inherentes a la propia misión de la Universidad. La investigación científica constituye una actividad intelectual que requiere determinadas aptitudes. Así, el profesor universitario, en su papel de investigador, debería disponer de ciertas aptitudes básicas como haber alcanzado una formación adecuada en el campo que desea investigar, tener ciertas cualidades morales, curiosidad y capacidad de asombro y disponer de los medios e instrumentos necesarios para desarrollar su trabajo.

La función investigadora del profesor debería canalizarse dentro de algún proyecto que marcara claramente la línea de investigación. Estos proyectos, evidentemente, precisan recursos, cuya consecución resulta en ocasiones muy complicada en situaciones, como la actual, de fuertes restricciones presupuestarias y caída muy importante de la actividad en el sector de la construcción.

Los resultados más relevantes de la actividad investigadora deben publicarse y transferirse, en la medida de lo posible, al sector empresarial. La difusión de los resultados de mayor relevancia es en revistas científicas de impacto, aunque también destacan los libros y capítulos de libro, y, en menor medida, la publicación en congresos, conferencias y seminarios. Los resultados, además, influyen fuertemente en la acreditación de la calidad investigadora, por lo que la elección de revistas de prestigio e impacto resulta muy importante. El Journal Citation Report (JCR), elaborado por el Institute for Scientific Information (ISI), publica el factor de impacto de la mayoría de las revistas de reconocido prestigio, siendo un indicador de calidad muy aceptado en la actualidad.

La explotación de los resultados de investigación y su transferencia a las empresas constituye un aspecto significativo de la actividad investigadora. Normalmente, la solicitud y explotación de patentes y productos con registro de propiedad intelectual acreditan dicha actividad. Por otra parte, también debe plantearse la posibilidad de creación y apoyo a empresas spin-off, pues supone una vía de promoción y salto al sector productivo por parte de los investigadores. En este sentido, la dirección de ejercicios final de máster y, especialmente, tesis doctorales contribuye a la formación de nuevo personal de investigación, completando así el ciclo de generación de recursos humanos dedicados a la investigación y desarrollo.

Todo lo anteriormente expuesto forma parte de los criterios actuales que guían a la Agencia Nacional de Evaluación de la Calidad y Acreditación (ANECA) en la evaluación del profesorado. Estos criterios, de alguna forma están definiendo un modelo de profesor tipo al cual se deben acercar todos aquellos que pretendan seguir la carrera de docente universitario. Con todo, en mi opinión, en el caso del profesor de los futuros ingenieros civiles, se deberían incluir ciertas exigencias que deberían modificar ligeramente las presentadas por ANECA. Fundamentalmente una Universidad que forme buenos ingenieros deberá contar como docentes también a buenos ingenieros, que además deberán tener capacidad docente e investigadora. En este sentido, siguiendo a Murcia (2005), “sería muy conveniente que los profesores de tecnologías, más que los investigadores no docentes, deberían tener actividad profesional en su campo. En la medida en que esto se aceptara, lo primero sería admitirlo, reconociendo el interés para la docencia de esta tarea profesional (que legalmente la universidad se ve en gran dificultad para asumir entre sus actividades), e incluso incentivar después de su realización adecuando mecanismos existentes o creando otros; pero no cubrirla bajo el epígrafe de investigación”.

Referencias:

Murcia, J. (2005). En el camino de una investigación más potente para la construcción de obra civil. I Jornadas de Investigación en Construcción. Instituto de CC. “E. Torroja”. CSIC. Vol. I, pp. 305-318. Ed. AMIET. Madrid, 2, 3 y 4 de junio de 2005.

Yepes, V. (2017). Proyecto de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 538 pp.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Página siguiente »

Universidad Politécnica de Valencia