¿Qué es el Análisis del Ciclo de Vida?

Nuestro grupo de investigación está en estos momentos muy centrado en aspectos relacionados con el análisis del ciclo de vida y con la sostenibilidad de las infraestructuras. Proyectos como BRIDLIFE y DIMALIFE inciden especialmente es estos temas. He considerado, por tanto, de gran interés para el lector, resumir brevemente el concepto, los tipos, algo de historia y proporcionar unas pequeñas referencias al respecto. Espero que os sean de interés.

El Análisis del Ciclo de Vida clásico constituye una metodología objetiva que trata de evaluar las cargas ambientales asociadas a un producto, proceso o actividad, identificando y cuantificando el uso de materia y energía además de las emisiones al entorno (Olivera et al., 2016).

Sus orígenes se remontan a finales de los años 60. Dos investigadores del Instituto de Investigación del Medio Oeste (MRI), Robert Hunt y William Franklin empezaron a trabajar en una técnica que permitiese cuantificar la energía demandada y los recursos, así como las emisiones de gases de efecto invernadero (GEI) por parte de las industrias (Trusty y Deru, 2005). Esta técnica paso a llamarse como Análisis de Perfil Ambiental y de Recursos (REPA) y se utilizó por primera vez en 1969 por el MRI junto a la compañía Coca-Cola para analizar y seleccionar los materiales más ecológicos y como tratarlos en su final de vida (Gerilla et al., 2007).

La primera expansión del uso de esta tecnología tuvo lugar durante la crisis energética de los años 70, para estudiar el consumo energético de productos de embalaje de plástico o cartón. A finales de los 80’s y principios de los 90’s tuvo de nuevo un gran alcance como herramienta de marketing (Owens, 1996).

Con los avances metodológicos de la herramienta y la proliferación de resultados muy dispares en los diferentes estudios realizados, se decidió llevar a cabo una armonización del ACV. Con dicha finalidad aparecieron diversas directrices, destacando la holandesa y la nórdica, que también incluían recomendaciones contradictorias.

A inicios de los 90’s, la Sociedad de Toxicología Ambiental y Química (SETAC) alcanzó a un consenso mediante grupos consultivos de América del Norte y Europa y elaboraron el “Código de práctica para la evaluación del ciclo de vida”. Paralelamente, surgieron otras iniciativas como la Guía LCA Z-760 de la Asociación de Estandarización Canadiense.

Finalmente, a finales de los años 90, surgieron los procesos de estandarización más reconocidos por parte de la Organización Internacional de Normalización (ISO) (Russell et al., 2005).

La ISO emitió los estándares internacionales más relevantes en 1997, definiendo el ACV como “un método para resumir y evaluar la carga ambiental de un producto (o servicio) en todo el ciclo de vida, y el impacto o influencia potencial sobre el medio ambiente” en la serie de normas ISO 14040 (AENOR, 2006). Esta metodología es compatible con la evaluación de los impactos socioeconómicos, puesto que comparten ciertos elementos que aportan datos comparativos muy útiles para la toma de decisiones frente a nuevos proyectos o acciones de mejora.

De este modo quedan las tres dimensiones del análisis del ciclo de vida:

  • Análisis del Ciclo de Vida Ambiental (ACV-A): Metodología ya presentada que contempla la carga ambiental producida por un producto o servicio durante todo el ciclo de vida.
  • Coste del Ciclo de Vida (CCV): Este análisis se centra en la etapa de diseño de un producto, analizando los costes directos y los beneficios de las actividades económicas, como los costes para la prevención de la contaminación, los costes de las materias primas, los impuestos y los intereses sobre el capital entre otros, en resumen, es una recopilación y evaluación de todos los costes relacionados con un producto a lo largo de todo su ciclo de vida.
  • Análisis del Ciclo de Vida Social (ACV-S): Se trata de una herramienta de evaluación de impactos sociales cuyo objetivo es analizar los aspectos sociales y socio-económicos de los productos y sus impactos potenciales (positivos y negativos) durante todo el ciclo de vida.

 

Como combinación de las tres tipologías, se plantea el Análisis del Ciclo de Vida de la Sostenibilidad (ACV-SOS) realizando un análisis integrado de cualquier producto o servicio.

La Comisión Europea planteó una guía de ruta a esta situación, por medio del proyecto CALCAS (Coordination for innovation in Life Cycle for Sustainability) desde el 2006, con el fin de organizar las distintas modalidades que han surgido mediante una futura norma ISO ACV, que englobara un análisis multicriterio sobre sostenibilidad (van der Giesen et al., 2013).

Aunque la metodología de las tres dimensiones del ACV está basada en la norma ISO 14040, esta no tiene dentro de su alcance el estudio del impacto económico y social, por lo que es necesario combinarla con otras herramientas para profundizar ese análisis. Os dejo a continuación una serie de referencias bibliográficas por si os interesa profundizar más en el tema.

Referencias

  • AENOR (2006). ISO 14040:2006. Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia. Madrid.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GERILLA, G. P.; TEKNOMO, K.; HOKAO, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment, 42(7), 2778–2784.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 (link).
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196:698-713. https://doi.org/10.1016/j.jclepro.2018.06.110
  • OLIVERA, A.; CRISTOBAL, S.; SAIZAR, C. (2016). Análisis de ciclo de vida ambiental, económico y social. INNOTEC, 7, 20–27.
  • OWENS, J. W. (1996). LCA Methodology LCA Impact Assessment Categories Technical Feasibility and Accuracy. International Journal of Life Cycle Assessment, 1(3), 151–158.
  • PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420.  https://doi.org/10.1016/j.jclepro.2018.04.268
  • RUSSELL, A.; EKVALL, T.; BAUMANN, H. (2005). Life cycle assessment – Introduction and overview. Journal of Cleaner Production, 13(13–14), 1207–1210.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure.Journal of Construction Engineering and Management, 142(5):  05015020. DOI: 10.1061/(ASCE)CO.1943-7862.0001099.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI: 10.1016/j.jclepro.2018.03.022.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 
  • TRUSTY, W.; DERU, M. (2005). The U.S. LCI database project and its role in Life Cycle Assessment. Building Design and Construction, 1, 26–29.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de la energía necesaria para construir puentes losa postesados

Acaban de publicarnos en la revista Technologies un artículo que aplica el algoritmo de recocido simulado a la optimización del coste y de la energía empleada en un puente losa postesado con tablero aligerado. Se resuelve un problema complejo de optimización de 33 variables de diseño. Como resultados interesantes cabe señalar que, en ocasiones, las soluciones de menor coste no son necesariamente las que menos energía consumen. El artículo se ha publicado en abierto y se puede descargar en la web. Aquí tenéis la referencia y el artículo completo.

 

Referencia:

ALCALÁ, J.; GONZÁLEZ-VIDOSA, YEPES, V.; MARTÍ, J.V. (2018). Embodied energy optimization of prestressed concrete slab bridge decks. Technologies, 6(2):43. doi:10.3390/technologies6020043 (link)

Descargar (PDF, 1.88MB)

Funcionamiento de un cilindro neumático de simple efecto. Problema resuelto

image001A continuación te presentamos un problema resuelto de neumática, muy sencillo, que sirve de introducción a los conceptos básicos de los circuitos neumáticos aprovechando la capacidad de un pistón de simple efecto conectado a un motor con pérdidas mecánicas. Se trata de aprender cómo calcular la fuerza de avance y aplicar la Ley de Boyle al cálculo del volumen de aire en condiciones normales.

El enunciado del problema sería el siguiente: Un cilindro neumático de simple efecto, de 63 cm de diámetro y 10 cm de carrera trabaja a una presión de 6 bares. Sabiendo que la fuerza neta ejercida en el vástago del cilindro es el 90% de la fuerza teórica, se pide:

  1. Fuerza neta ejercida por el cilindro en su carrera de avance.
  2. Consumo de aire medido en condiciones normales en una hora, si ese cilindro completa 6 ciclos de trabajo cada minuto.

Para ello os dejo el siguiente vídeo de Javier Luque que espero os sea útil.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Investigación e innovación en puentes y torres eólicas prefabricadas de hormigón pretensado

MaríA continuación os dejo una ponencia presentada por el catedrático de la UPC Antonio Marí dentro de la Jornada de Recerca i Innovació celebrada en Barcelona el 15 y 16 de noviembre de 2011. Los autores de la ponencia son, además, Jesús M. Bairán, Eva Oller y Noemí Duarte.

Se trata de una ponencia sobre investigación e innovación en puentes y torres prefabricadas de hormigón pretensado. Espero que os guste.

Rendimiento de un motor térmico. Problema resuelto.

motoranimation1hk5Seguimos con este post con problemas para nuestros alumnos que están de exámenes. Aprende a calcular el rendimiento de un motor térmico a partir de su velocidad de régimen y su par motor conociendo las características de su combustible. Evalúa cómo influye en el gasto que el motor sea de cuatro tiempos o de dos tiempos en idénticas condiciones de funcionamiento.

El enunciado del problema es el siguiente: Un motor de cuatro tiempos consume 8,47 litros a la hora de un combustible de 0,85 kg/dm3 de densidad y 41000 kJ/kg de poder calorífico. Entrega un par de 78,3 Nm a 3000 rpm. Se pide:

  1.  Calcular la masa de combustible consumida en cada ciclo
  2.  Calcular el rendimiento del motor
  3.  ¿Qué consecuencias tendría en el consumo/ciclo si el motor fuera de dos tiempos?

Para ello te dejo un vídeo de Javier Luque que espero te resulte de interés.

Referencias:

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Maquinaria auxiliar y equipos de elevación. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 200 pp.

¿Cómo se pueden proyectar puentes de bajo consumo energético?

ph_vigas-artesa
Puente de vigas artesa prefabricadas. Fuente: Pacadar

¿Cómo se pueden diseñar puentes pretensados prefabricados en vigas artesa haciendo que el consumo energético para su fabricación y puesta en obra sea el mínimo posible?

Os podéis descargar gratuitamente, hasta el 21 de abril de 2016, el artículo original y completo de nuestra publicación. Basta con que acudáis al siguiente enlace de Elsevier:

http://authors.elsevier.com/a/1SeBx3QCo9IDYU

Otros artículos científicos relacionados los podéis ver en:  http://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

 

Highlights

  • An automated procedure for optimizing the design of structures is presented.
  • There is a parabolic relation between the span length and the minimum energy.
  • The energy reduction has an average cost impact of 3.23€ per square meter of deck.
  • Since both criteria are dependent, 1€ reduction is equivalent to 4 kW h saving.

Abstract

S09596526An automated procedure for optimizing the design of precast-prestressed concrete U-beam road bridges is presented. The economic cost and the embodied energy are selected as the objective functions based on production materials, transport and placement. Heuristic optimization is used to search for the best geometry, the concrete type, the prestressing steel, and the reinforcement for the slab and the beam. The results for both objectives provide improved opportunities to learn about low-energy designs. The most influential variables for the energy efficiency goal are analyzed. The relationship between the span length and the embodied energy is described by a good parabolic fit for both optimization criteria. The findings indicate that the objectives do not exhibit conflicting behavior, and also that optimum energy designs are close to the optimum cost designs. The analysis also revealed that a reduction by 1 Euro can save up to 4 kWh. It is recommended to reduce the reinforcement in the slab as well as increase the volume of concrete in both slab and beams in order to achieve higher energy efficiency. It is also worth noting that web inclination angle should be increased when the depth increases for longer span lengths to maintain the optimum slab span lengths in the transverse direction.

Keywords

  • Heuristic optimization;
  • energy savings;
  • sustainable construction;
  • precast-prestressed concrete structures

 

Referencia:

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy.Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024(link)

 

Cimentaciones prefabricadas en aerogeneradores

Aerogenerador de Unión Fenosa en la provincia de León (España). Wikipedia

La demanda de energía renovable a nivel mundial se incrementa con la conciencia medioambiental. La energía eólica es una energía renovable que se está implantando fuertemente a nivel mundial. Se estima que la energía contenida en los vientos es aproximadamente el 2% del total de la energía solar que alcanza la tierra, lo que supone casi dos billones de toneladas equivalentes de petróleo al año (200 veces mayor de la que consumen todos los países del planeta), aunque en la práctica solamente podría ser utilizada una parte muy pequeña de esa cifra, por su aleatoriedad y dispersión, del orden del 5%. Según “The World Wind Energy Association”, la capacidad mundial eólica instalada alcanzó un nivel sin precedentes de más de 318 GW a finales de 2013, de los cuales aproximadamente 35 GW se añadieron en 2013, el nivel más alto registrado hasta la fecha. La energía eólica contribuye en cerca de un 4% en satisfacer la demanda de energía eléctrica mundial. Un total de 103 países están utilizando este tipo de energía desde el punto de vista comercial y se espera que la capacidad de generación de energía eólica pueda aumentar hasta 700 GW en el horizonte del año 2020. En España, la contribución de la eólica a la demanda eléctrica en el año 2010 representó el 16% del total y su objetivo es aumentar ese porcentaje en un futuro. Una sola turbina puede abastecer de electricidad a 500 hogares. Recientemente Huang y McElroy (2015) han realizado una revisión de las perspectivas de este tipo de energía en relación al cambio climático.

El aerogenerador se compone de tres partes: torre, rotor y álabes. En el generador eléctrico es donde se transforma el movimiento mecánico del rotor en energía eléctrica. Suele ser un generador asíncrono o de inducción, con una potencia máxima entre 500 y 1500 kW. Están diseñados generalmente para rendir al máximo a velocidades alrededor de 15 m/s. En el caso de vientos más fuertes es necesario gastar parte del exceso de la energía del viento para evitar daños en el aerogenerador. En consecuencia todos los aerogeneradores están diseñados con algún tipo de control de potencia. Los componentes de un aerogenerador están diseñados para durar 20 años. Esto significa que tendrán que resistir más de 120.000 horas de funcionamiento, a menudo bajo condiciones climáticas adversas (Gálvez, 2005). Respecto a las torres eólicas, se distinguen las “onshore”, instaladas en tierra, normalmente en grandes llanos o zonas elevadas y las “offshore”, cuya localización es dentro del mar, en zonas próximas a la costa.

aerogenerador
http://e-ducativa.catedu.es

Los aerogeneradores operan bajo regímenes de carga muy exigentes (Burton et al., 2001), cuyos efectos podrían disminuir la integridad estructural y llevar a costes de mantenimiento y reparación que podrían ser inaceptables. Rebelo et al (2014) abordan el estudio comparativo relativo la influencia del aumento de altura en el diseño estructural y los resultados de diferentes soluciones estructurales de un aerogenerador. Sus conclusiones son que el uso de secciones tubulares de acero y conexiones de brida son adecuadas para torres de hasta 80 m, mientras que las conexiones de fricción son mejores para torres más altas. En cuanto a las torres de hormigón, éstas dejan de ser competitivas por encima de 100 m de altura, especialmente por las dimensiones necesarias de la cimentación ante riesgo sísmico, que pueden incrementar el volumen de hormigón en cimientos hasta un 75%. Sin embargo, según refiere Lofty (2012), la prefabricación de la torre con hormigón es de gran interés a partir de los 75 m de altura. La fuerza vertical que actúa sobre la cimentación se debe fundamentalmente al peso propio de la torre, la góndola y las palas del rotor, incluso cierta fuera vertical provocada por el viento. Sin embargo, son preponderantes las fuerzas horizontales provocadas por el viento, generando un gran momento flector en la base debido a la gran altura de la torre. La torre suele ser prefabricada, en forma troncocónica, conectándose a la cimentación a través de una interfaz que suele ser un tubo de acero de grandes dimensiones insertado en el hormigón de la cimentación, aunque existen múltiples variantes en estos conectores.

http://www.inproin.com

Una de las partes fundamentales de un aerogenerador es la forma en que la torre se sujeta al terreno. La selección del tipo de cimiento dependerá fundamentalmente de la ubicación del aerogenerador y las condiciones del terreno. Según la European Wind Energy Association (2013), la cimentación supone aproximadamente el 6,5% del coste total para proyectos onshore y el 34% para proyectos offshore, lo que justifica una optimización de este tipo de estructuras (Horgan, 2013). Hoy en día, construimos la mayoría de las turbinas eólicas en tierra en suelos firmes y rígidos, pero probablemente las futuras torres eólicas se construirán sobre suelos con propiedades menos favorables. El cálculo de la cimentación depende de las cargas producidas por el rotor eólico en diferentes condiciones de operación, por esto la tecnología del aerogenerador juega un papel fundamental. La forma más habitual de cimentar un aerogenerador es una zapata de hormigón (Hassanzadeh, 2012). Tal y como indica Svensson (2010), las cimentaciones sobre losas de hormigón podrían dejar de ser adecuadas, pues grandes dimensiones provocan asientos diferenciales inaceptables. La altura de las torres puede variar mucho, entre 40 y 130 m. Cuanta más alta sea la torre, mayor velocidad de viento, y por tanto, mayor generación de energía.

Las torres de aerogeneradores se localizan en áreas con buenas condiciones de viento pero que, en numerosas ocasiones, se encuentran en terrenos inhóspitos o con malas condiciones de acceso, lo cual dificulta la ejecución de las cimentaciones de estas estructuras. Para anclar estas torres normalmente se utilizan los métodos: cimentaciones o zapatas que sujetan la estructura al terreno mediante gravedad, o bien mediante anclajes realizados sobre terrenos competentes. Se busca garantizar la estabilidad de la estructura y asegurar una transmisión de cargas al terreno con la adecuada intensidad para que este no colapse. En numerosas ocasiones los terrenos no permiten dicho anclaje, por lo que es habitual el uso de zapatas masivas realizadas con hormigón armado. No obstante, las geometrías empleadas en planta son muy diversas. Se utilizan soluciones con planta poligonal, circular e incluso cruciforme, siendo esta ultima un caso muy aislado. Herrando (2012) ha comprobado cómo para un aerogenerador tipo de 100 m de altura y 3,5MW de potencia, la cimentación superficial con geometría en planta circular es la que mejores resultados ofrece a nivel estructural y económico.

Cimentación prefabricada para torre eólica de la empresa Artepref. Fuente: Diario de Burgos
Cimentación prefabricada para torre eólica de la empresa Artepref. Fuente: Diario de Burgos

Las ventajas de la prefabricación son evidentes, reduciéndose incluso la cantidad de material necesario respecto a cimentaciones ejecutadas “in situ”. La prefabricación reduce los problemas de hormigonado in situ de grandes volúmenes, que no sólo generan problemas importantes cuando los accesos se encuentran alejados de las plantas de fabricación de hormigón e incrementan considerablemente el calor de hidratación en el fraguado del hormigón, sino que las temperaturas extremas pueden reducir el número de días de trabajo efectivo. Además, teniendo en cuenta que la vida útil de un aerogenerador puede ser de 20 a 25 años, la prefabricación facilita la fase de desmantelamiento de las instalaciones. Se han generado en el mercado cimentaciones alternativas donde una parte o la totalidad de la cimentación se realizan con piezas prefabricadas. Así, algunas patentes europeas y americanas, como por ejemplo, DK200100030 (2001) y WO2004101898A2 (2004), han desarrollado soluciones de cimentación prefabricadas para el caso de pequeñas instalaciones, no quedando claro que alguna de estas soluciones se hayan construido realmente (Nilsson, 2012). Empresas como Gestamp Hybrid Towers ofrecen diseños de cimentaciones prefabricadas para torres en forma de T invertida que pretende ofrecer eficiencia y ductilidad a la solución. La empresa burgalesa ARTEPREF patentó también una cimentación prefabricada para este tipo de torres. Además, estas soluciones suelen unir las piezas prefabricadas mediante hormigón fresco. Por tanto, el elemento clave en el diseño de este tipo de cimentaciones son la forma con la que se resuelven las juntas para convertir las piezas en un conjunto monolítico y también la conexión o “brida” de la torre con la cimentación (Hassanzadeh, 2012). Bellmer (2010) advierte de que gran parte de los problemas de durabilidad de los aerogeneradores se deben a un mal diseño de la cimentación. Currie et al (2013) presentan una solución para monitorizar las cimentaciones de estas torres. Eneland y Mallberg (2013) advierten de la gran dificultad que existe en diseñar un método de cálculo para las juntas de las piezas prefabricadas de este tipo de cimentaciones. Asimismo, una de las claves es la justificación de la viabilidad económica de los elementos frente a las cimentaciones ejecutadas “in situ”.

Referencias:

  • BURTON, T.; SHARPE, S.; JENKINS, N.; BOSSANYI, E. (2001). Wind Energy Handbook. Wiley, Chichester, UK, pp. 211–219.
  • BELLMER, H. (2010). Probleme im Bereich Stahlturm – Fundament, 3rd Technical Conference – Towers and Foundations for Wind Energy Converters, HAUS DER TECHNIK, Essen, Germany.
  • CURRIE, M.; SAAFI, M.; TACHTATZIS, C.; QUALI, F. (2013). Structural health monitoring for wind turbine foundations. Proceedings of the Institution of Civil Engineers, Paper 1200008.
  • DK200100030 (2001). Stjernefundament med elementer til foundering af tårne. Patent
  • ENELAND, E.; MALLBERG, L. (2013). Prefabricated foundation for wind power plants. A conceptual design study. Thesis in the Master’s Programme Structural Engineering and Building Technology, Chalmers University of Technology, Sweden.
  • GÁLVEZ, R. (2005). Diseño y cálculo preliminar de la torre de un aerogenerador. Proyecto Fin de Carrera, Universidad Carlos III de Madrid, Departamento de Mecánica de Medios Continuos y Teoría de Estructuras.
  • HASSANZADEH, M. (2012). Cracks in onshore wind power foundations. Causes and consequences. Stockholm: Elforsk (Elforsk Rapport, 11.56).
  • HERRANDO, V. (2012). Optimización del diseño de la cimentación para un aerogenerador de gran altura. Trabajo Fin de Carrera, Universitat Politècnica de Calalunya.
  • HORGAN, C. (2013). Using energy payback time to optimise onshore and offshore wind turbine foundations. Renewable Energy, 53:287-298.
  • HUANG, J.; McELROY, M.B. (2015). A 32-year perspective on the origin of wind energy in a warming climate. Renewable Energy, 77:482-492.
  • LOFTY, I. (2012). Prestressed concrete wind turbine supporting system. Master’s Dissertation, University of Nebraska, USA.
  • NILSON, M. (2012). Prefabricated foundations with cell reinforcement for land-based wind turbines. . Stockholm: Elforsk (Elforsk Rapport, 13:06).
  • REBELO, C.; MOURA, A.; GERVÁSIO, H.; VELJKOVIC, M.; SIMOES DA SILVA, L. (2014). Comparative life cycle assessment of tubular wind towers and foundations – Part 1: Structural design. Engineering Structures, 74:283-291.
  • SVENSSON, H. (2010). Design of foundations for wind turbines. Master’s Dissertation, Department of Construction Sciences, Lund University, Sweden.
  • The World wind energy association 2013 report. April 2014. Bonn, Germany. http://refhub.elsevier.com/S0960-1481(14)00872-6/sref1
  • WO2004101898A2 (2004). Foundation for a wind energy plant. Patent

 

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de un parque eólico

 

Parque eólico en Picu el Gallo en Tineo, Asturias. Wikipedia

El parque eólico es una central eléctrica donde la producción de la energía eléctrica se consigue a partir de la fuerza del viento, mediante aerogeneradores que aprovechan las corrientes de aire. Para producir electricidad con una central eólica es necesario que el viento sople a una velocidad de entre 3 y 25 m/s. Casi todos los aerogeneradores que producen electricidad constan de un rotor con palas o aspas que giran alrededor de un eje horizontal. Éste está unido a un conjunto de transmisión mecánica o multiplicadora y, finalmente, a un generador eléctrico, ubicados ambos en la barquilla suspendida en lo alto de la torre.

La energía eólica es de las más limpias, renovables y abundantes, ya que los aerogeneradores eléctricos no producen emisiones contaminantes (atmosféricas, residuos, vertidos líquidos…) y no contribuyen, por lo tanto, al efecto invernadero ni a la acidificación. No obstante, también existen factores negativos, como el impacto visual, el impacto sobre las aves, modificación de la fauna y flora, el efecto sonoro, el impacto por erosión o las interferencias electromagnéticas.

Un proyecto de un parque eólico se puede dividir en fase de ejecución, fase de explotación y fase de clausura. La vida media de un parque eólico es de unos 20 años, y su desmantelamiento no implica grandes dificultades. En la fase de ejecución o construcción se pueden diferenciar los siguientes procesos: construcción de accesos, construcción de plataformas de montaje, construcción de edificaciones anejas, instalación eléctrica y montaje de los aerogeneradores. Os dejo varios vídeos donde se describe cómo se construye un aerogenerador.

Endesa nos facilita un vídeo donde se puede ver el funcionamiento de un aerogenerador.

 

 

El complejo hidroeléctrico Cortes-La Muela

Imagen aérea del complejo hidroeléctrico de La Muela Cortes de Pallás / IBERDROLA

El complejo Cortes-La Muela se ubica en el margen derecho del Júcar, en el término municipal de Cortes de Pallás, en Valencia. La Compañía IBERDROLA ha invertido en esta obra más de 1.500 millones de euros, 165 millones al área de Generación, cuyo principal proyecto es la construcción de La Muela II. El sistema de bombeo permite “subir” agua desde el embalse situado en la parte inferior al superior cuando la demanda de electricidad es baja y hay producción excedente en el sistema. Por ejemplo, en noches de mucho viento. Gracias a la puesta en marcha de los cuatro grupos reversibles que se van a instalar en la central de La Muela II, de cara a aprovechar el desnivel de 500 metros existente entre el depósito artificial de La Muela y el embalse de Cortes de Pallás.

La caverna central tiene una bóveda de 117 metros de longitud, 19,85 metros de anchura  y 50 metros de alto construida con hormigón armado que se organiza en tres plantas principales: la planta de acceso, la planta de alternadores y la planta de turbinas. Esta caverna alberga cuatro grupos reversibles que suman 850 MW de potencia total en turbinación y 740 MW en bombeo. De este modo se amplia la potencia del aprovechamiento de los 630 MW actuales en turbinación a 1720, y los 555 MW de bombeo a 1280 MW.

http://www.ciudadfcc.com

Os dejo un vídeo sobre la construcción de esta central hidráulica de bombeo. Espero que os guste.

En este vídeo se muestra la inauguración del complejo hidroeléctrico, el 14 de octubre del 2013.