UPV



Docencia


Publicada By  Víctor Yepes Piqueras - Docencia, ingeniería civil, universidad    

Las competencias específicas son las propias de un ámbito o título y se orientan a la consecución de un perfil concreto del egresado. En estas competencias se incluyen las competencias básicas o generales y las competencias específicas propiamente. En el caso de los títulos que habilitan para el ejercicio de una actividad profesional regulada, las órdenes ministeriales correspondientes hacen referencia a las competencias que se deben requerir. Sobre los componentes que conforman la competencia de un título resulta de interés un trabajo desarrollado (Yepes et al., 2016) sobre la adquisición de competencias en un máster en gestión de la construcción.

El Apartado 3 del “Anexo I” de la Orden CIN/307/2009, de 9 de febrero, incluye las competencias de carácter general y en su Apartado 5 las competencias de los módulos correspondientes a las especializaciones que habilitan para el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas. El diseño del título de Grado en Ingeniería Civil en la UPV se ha basado en estas competencias. Además, se han complementado con otras competencias adicionales dando lugar al listado completo recogido en la actual Memoria de Verificación del título, fechada el 30 de julio de 2015. El listado de competencias de este título es el siguiente:

Competencias básicas

CB1 – Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2 – Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

CB3 – Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CB4 – Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

CB5 – Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

Competencias generales

A01 – Analizar críticamente los procesos propios de la Ingeniería Civil.

A02. – Aprender de manera autónoma nuevos conocimientos y técnicas adecuados para la Ingeniería Civil.

A03 – Comprender y asumir la responsabilidad ética y profesional de la actividad del Ingeniero Civil.

A04 – Comprender y utilizar el lenguaje propio de la ingeniería así como la terminología propia de la Ingeniería Civil.

A05 – Comunicar de forma efectiva, tanto escrito como oral, conocimientos, procedimientos, resultados e ideas relacionadas con la Ingeniería Civil.

A06 – Comunicar por escrito y de forma oral conocimientos, procedimientos, resultados e ideas relacionadas con la Ingeniería Civil en una segunda lengua.

A07 – Conocer y comprender las ciencias y las tecnologías correspondientes para la planificación, proyecto, construcción y explotación de las obras propias del Sector de la Ingeniería Civil.

A08 – Dirigir y coordinar grupos de trabajo en el ámbito de la Ingeniería Civil, proponiendo métodos de trabajo estándar y herramientas a utilizar.

A09 – Disponer de los fundamentos físicos y matemáticos necesarios para interpretar, seleccionar y valorar la aplicación de nuevos conceptos y desarrollos científicos y tecnológicos relacionados con la Ingeniería Civil.

A10 – Tener la capacidad para organizar y gestionar técnica, económica y administrativamente los distintos medios de producción propios de la Ingeniería Civil.

A11 – Capacitar científica y técnicamente para el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas con conocimiento de las funciones de asesoría, análisis, diseño, cálculo, proyecto, construcción, mantenimiento conservación y explotación.

A12 – Comprender los múltiples condicionamientos de carácter técnico y legal que se plantean en la construcción de una obra pública, y capacitación para emplear métodos contrastados y tecnologías acreditadas, con la finalidad de conseguir la mayor eficacia de la construcción dentro del respeto por el medio ambiente y la protección de la seguridad y salud de los trabajadores y usuarios de la obra pública.

P01 – Comprender trabajos de ingeniería complejos, que engloben distintas disciplinas de la ingeniería civil y materias relacionadas. Integrar estos conocimientos en el planteamiento y definición de la ejecución, conservación o explotación de obras de ingeniería civil.

Competencias específicas

A13 – Capacitar para la aplicación de la legislación necesaria durante el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas.

A14 – Proyectar, inspeccionar y dirigir obras, en su ámbito.

A15 – Mantener y conservar los recursos hidráulicos y energéticos, en su ámbito Capacidad para el mantenimiento y conservación de los recursos hidráulicos y energéticos, en su ámbito.

A16 – Realizar de estudios de planificación territorial y de los aspectos medioambientales relacionados con las infraestructuras, en su ámbito.

A17 – Mantener, conservar y explotar infraestructuras, en su ámbito.

A18 – Realizar estudios y diseñar captaciones de aguas superficiales o subterráneas, en su ámbito.

A19 – Aplicar técnicas de gestión empresarial y legislación laboral. Conocimiento y capacidad de aplicación de técnicas de gestión empresarial y legislación laboral.

A20 – Conocer la historia de la ingeniería civil y analizar y valorar las obras públicas en particular y la construcción en general.

B01 – Resolver problemas matemáticos que puedan plantearse en la ingeniería, aplicando los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización.

B02 – Adquirir visión espacial y dominar las técnicas de representación gráfica, tanto por métodos tradicionales de geometría métrica y geometría descriptiva como mediante las aplicaciones de diseño asistido por ordenador.

B03 – Aplicar los conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos a la ingeniería.

B04 – Resolver problemas propios de la ingeniería, aplicando los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo.

B05 – Resolver problemas propios de la ingeniería aplicando los conocimientos básicos de geología y morfología del terreno. Climatología.

B06 – Organizar y gestionar empresas. Conocer el concepto de empresa, su marco institucional y jurídico.

C01 – Obtener mediciones, formar planos, establecer trazados, llevar al terreno geometrías definidas o controlar movimientos de estructuras u obras de tierra, aplicando las técnicas topográficas imprescindibles.

C02 – Comprender las propiedades químicas, físicas, mecánicas y tecnológicas de los materiales más utilizados en construcción.

C03 – Aplicar los conocimientos de materiales de construcción en sistemas estructurales, a partir del conocimiento de la relación entre la estructura de los materiales y las propiedades mecánicas que de ella se derivan.

C04 – Analizar y comprender cómo las características de las estructuras influyen en su comportamiento. Aplicar los conocimientos sobre el funcionamiento resistente de las estructuras para dimensionarlas siguiendo las normativas existentes y utilizando métodos de cálculo analítico y numérico.

C05 – Aplicar los conocimientos de geotecnia y mecánica de suelos y de rocas en el desarrollo de estudios, proyectos, construcciones y explotaciones donde sea necesario efectuar movimientos de tierras, cimentaciones y estructuras de contención.

C06 – Concebir, proyectar, construir y mantener estructuras de hormigón armado y estructuras metálicas a partir del conocimiento de los fundamentos del comportamiento de dichas estructuras.

C07 – Comprender los conceptos y los aspectos técnicos vinculados a los sistemas de conducciones, tanto en presión como en lámina libre.

C08 – Comprender los conceptos básicos de hidrología superficial y subterránea.

C09 – Analizar la problemática de la seguridad y salud en las obras de construcción.

C10 – Comprender el sistema eléctrico de potencia: generación de energía, red de transporte, reparto y distribución, así como sobre tipos de líneas y conductores. Comprender la normativa sobre baja y alta tensión.

C11 – Aplicar metodologías de estudios y evaluaciones de impacto ambiental.

C12 – Comprender los procedimientos constructivos, la maquinaría de construcción y las técnicas de organización, medición y valoración de obras.

H01 – Identificar obras e instalaciones hidráulicas, sistemas energéticos, aprovechamientos hidroeléctricos y planificación y gestión de recursos hidráulicos superficiales y subterráneos.

H02 – Comprender el funcionamiento de los ecosistemas y los factores ambientales.

H03 – Identificar los proyectos de servicios urbanos relacionados con la distribución de agua y el saneamiento.

I01 – Comprensión y producción de textos complejos específicos de Ingeniería civil y del ámbito científico técnico en inglés. Conversación fluida en inglés como usuario independiente. Consolidación de terminología específica de la ingeniería civil en inglés (nivel B2).

I02 – Comprensión y producción de textos complejos específicos de Ingeniería civil y del ámbito científico técnico en francés. Conversación fluida en francés como usuario independiente. Consolidación de terminología específica de la ingeniería civil en francés (nivel B2).

I03 – Comprensión y producción de textos complejos específicos de Ingeniería civil y del ámbito científico técnico en alemán. Conversación fluida en alemán como usuario independiente. Consolidación de terminología específica de la ingeniería civil en alemán (nivel B2).

I04 – Expresión oral y escrita en castellano de ideas y conceptos complejos relacionados con la Ingeniería civil. Redacción de informes, dictámenes, proyectos y otros textos frecuentes de la ingeniería. Defensa oral de estos textos y de otros conceptos relacionados.

I05 – Expresión oral y escrita en valenciano de ideas y conceptos complejos relacionados con la Ingeniería civil. Redacción de informes, dictámenes, proyectos y otros textos frecuentes de la ingeniería. Defensa oral de estos textos y de otros conceptos relacionados.

P02 – Conocer y comprender determinados aspectos del proceso proyecto-construcción: contrato de consultoría y asistencia, documentos del proyecto y contrato de obra. Obtener una visión conjunta de todo el Proyecto de Construcción y su interpretación.

T03 – Comprender el marco de regulación de la gestión urbanística.

T04 – Urbanizar el espacio público urbano y proyectar los servicios urbanos, tales como distribución de agua, saneamiento, gestión de residuos, sistemas de transporte, tráfico, iluminación, etc., conociendo la influencia de las infraestructuras en la ordenación del territorio.

T05 – Comprender el diseño y funcionamiento de las infraestructuras para el intercambio modal, tales como puertos, aeropuertos, estaciones ferroviarias y centros logísticos de transporte.

V01 – Aplicar el conocimiento de la tipología y las bases de cálculo de los elementos prefabricados en los procesos de fabricación.

V02 – Comprender el proyecto, cálculo, construcción y mantenimiento de las obras de edificación en cuanto a la estructura, los acabados, las instalaciones y los equipos propios.

V03 – Construir y conservar obras marítimas.

V04 – Construir y conservar carreteras, así como dimensionar el proyecto y los elementos que componen las dotaciones viarias básicas.

V05 – Construir y conservar las líneas de ferrocarriles con conocimiento para aplicar la normativa técnica específica y diferenciando las características del material móvil.

V06 – Aplicar los procedimientos constructivos, la maquinaria de construcción y las técnicas de planificación de obras.

V07 – Construir obras geotécnicas.

V08 – Comprender los sistemas de abastecimiento y saneamiento, así como su dimensionamiento, construcción y conservación.

Referencias:

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2016, Valencia, pp. 1-14.

YEPES, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Publicada By  Víctor Yepes Piqueras - algoritmo, Docencia, investigación operativa, optimización, ordenadores, Polimedia, programación    

La cristalización simulada (también llamado recocido simulado)  “Simulated Annealing, SA” constituye una de las estrategias a las que se recurre en la resolución de los problemas de optimización combinatoria. Kirkpatrick, Gelatt y Vecchi la propusieron por primera vez en 1983 y Cerny en 1985 de forma independiente. Estos autores se inspiraron en los trabajos sobre Mecánica Estadística de Metrópolis et al. (1953). La metaheurística despliega una estructura que se inserta cómodamente en la programación, mostrando además una considerable habilidad para escapar de los óptimos locales. Fue una técnica que experimentó un auge considerable en la década de los 80 para resolver los modelos matemáticos de optimización.

La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución admisible de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. Conceptualmente es un algoritmo de búsqueda por entornos, que selecciona candidatos de forma aleatoria. La alternativa se aprueba si perfecciona la solución actual (D menor o igual que cero); en caso contrario, será aceptada con una probabilidad  (e(-D/T) si D>0, donde T es el parámetro temperatura) decreciente con el aumento de la diferencia entre los costes de la solución candidata y la actual. El proceso se repite cuando la propuesta no es admitida. La selección aleatoria de soluciones degradadas permite eludir los mínimos locales. La cristalización simulada se codifica fácilmente, incluso en problemas complejos y con funciones objetivo arbitrarias. Además, con independencia de la solución inicial, el algoritmo converge estadísticamente a la solución óptima (Lundy y Mees, 1986). En cualquier caso, SA proporciona generalmente soluciones valiosas, aunque no informa si ha llegado al óptimo absoluto. Por contra, al ser un procedimiento general, en ocasiones no resulta competitivo, aunque sí comparable, ante otros específicos que aprovechan información adicional del problema. El algoritmo es lento, especialmente si la función objetivo es costosa en su tiempo de computación. Además, la cristalización simulada pierde terreno frente a otros métodos más simples y rápidos como el descenso local cuando el espacio de las soluciones es poco abrupto o escasean los mínimos locales.

Os dejo un vídeo explicativo: https://www.youtube.com/watch?v=wtw_B_3lrjE

Referencias

CERNY, V. (1985). Thermodynamical approach to the traveling salesman problem: an efficient simulated algorithm. Journal of Optimization Theory and Applications, 45: 41-51.

KIRKPATRICHK, S.; GELATT, C.D.; VECCHI, M.P. (1983). Optimization by simulated annealing. Science, 220(4598): 671-680.

LUNDY, M.; MEES, A. (1986). Convergence of an Annealing Algorithm. Mathematical programming, 34:111-124.

METROPOLIS, N.; ROSENBLUTH, A.W.; ROSENBLUTH, M.N.; TELLER, A.H.; TELER, E. (1953). Equation of State Calculation by Fast Computing Machines. Journal of Chemical Physics, 21:1087-1092.

GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)

Publicada By  Víctor Yepes Piqueras - Docencia, empresa consultora, gestión, ingeniería civil, recursos humanos    

Document downloaded from:
This paper must be cited as:

https://riunet.upv.es/handle/10251/89675

Pellicer Armiñana, E.; Yepes Piqueras, V.; Ortega Llarena, AJ.; Carrión García, A. (2017). Market demands on construction management: A view from graduate students. JOURNAL OF PROFESSIONAL ISSUES IN ENGINEERING EDUCATION AND PRACTICE. 143(4):1-11. doi:10.1061/(ASCE)EI.1943-5541.0000334

Descargar (PDF, 367KB)

 

 

20 octubre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, costes, Docencia, estructuras, hormigón, ingeniería civil, investigación, modelo matemático, optimización, ordenadores, Polimedia, programación    

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejos algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)
26 julio, 2017
 

Publicada By  Víctor Yepes Piqueras - Docencia, ingeniería civil, universidad    

Resumen: El cambio en la orientación del sistema de educación superior ha dado lugar a un modelo de enseñanza centrada en el aprendizaje del estudiante y la adquisición de habilidades. La comunicación presenta la valoración por parte de los alumnos de los recursos utilizados en la docencia de la “clase inversa”. Se ha diseñado un cuestionario para evaluar la metodología activa y herramientas utilizadas. De los resultados se destaca que la herramienta mejor valorada es Lessons, seguida de Recursos de Poliformat y diapositivas en pdf. Los vídeos de polimedia y los vídeos de procedimientos constructivos presentan poca desviación, indicando que todos los alumnos están de acuerdo con la utilidad de dichas tecnologías. También es importante destacar que no hay ningún alumno en desacuerdo con la metodología activa. En concreto, la corrección de entregables es la actividad más valorada en el proceso del aprendizaje.

Palabras clave: recursos tecnológicos, herramientas, metodología activa, clase inversa, cuestionario

Referencia:

GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2017, Valencia, 13 y 14 de julio de 2017, 9 pp.

Descargar (PDF, 502KB)

13 julio, 2017
 

Publicada By  Víctor Yepes Piqueras - canalizaciones, Docencia, hidráulica, medios auxiliares    

Bomba centrífuga. https://es.wikipedia.org/

 

El punto de funcionamiento o de operación de una bomba centrifuga se define como el flujo volumétrico de fluido que esta enviara cuando se instale en un sistema dado. El régimen de trabajo se determina por el punto de intersección de las características de la bomba y de la tubería, y por eso, al ser la característica de la conducción (tubería) invariable, salvo que se actúe sobre la válvula de impulsión, el cambio del número de revoluciones de la bomba provocará el desplazamiento del punto de trabajo a lo largo de la característica de la tubería. Si ésta corta a una parábola de regímenes semejantes, al cambiar el número de revoluciones y pasar a otra curva característica, la semejanza se conservará, pudiéndose considerar en este caso que el cambio del número de revoluciones de la bomba no alterará la semejanza de los regímenes de trabajo.

Para aclarar un poco más este tema, os dejo un problema resuelto con los conceptos básicos resueltos. Espero que os sea de interés.

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Descargar (PDF, 215KB)

27 abril, 2017
 

Publicada By  Víctor Yepes Piqueras - Docencia, excavación, seguridad    

En numerosas ocasiones se plantea en obra la necesidad de entibar una excavación, especialmente cuando la profundidad sobrepasa 1,20 m. Para ello os dejo una formulación basada en la teoría de Rankine donde se calcula la altura crítica anulando el empuje activo del terreno. Como veréis, esta altura sólo se puede conseguir con terrenos cohesivos donde no exista nivel freático. También os dejo un par de cuadros donde aparece la resistencia a compresión simple de terrenos cohesivos y una tabla con ángulos de inclinación y pendientes de taludes en función del terreno y de la presencia de agua.

Descargar (PDF, 77KB)

Tabla 1. Altura máxima admisible en metros de taludes libres de solicitaciones, en función del tipo de terreno, del ángulo de inclinación de talud no mayor de 60º y de la resistencia a compresión simple del terreno.

 

Tabla 2. Inclinaciones y pendientes de los taludes, dependiendo de la naturaleza y contenido en agua del terreno

 

 

 

25 abril, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - Docencia, maquinaria, movimiento de tierras, procedimientos de construcción    

La velocidad máxima a la que se puede desplazar una máquina depende de la resistencia a la rodadura del suelo, de forma que no se produzca deslizamiento. Esta fuerza, a partir de la cual se produce el deslizamiento, se denomina rimpull utilizable. Se calcula multiplicando el peso que llega al eje tractor por el coeficiente de adherencia o factor de tracción que depende tanto del tipo de superficie como del tipo de rueda u oruga.

Sin embargo, el rimpull disponible, definido como la fuerza de tracción aplicada entre las llantas de las ruedas tractoras y el suelo, depende directamente de la potencia del motor y del coeficiente de rendimiento total del sistema de transmisión, e inversamente proporcional a la velocidad del vehículo. La potencia del motor se debe corregir en función de las condiciones de trabajo reales (altitud, temperatura y humedad en el ambiente). El rimpull utilizable debe ser mayor al disponible para que las ruedas no deslicen.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204.

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia.

Os dejo a continuación un ejemplo resuelto para aclarar estos conceptos. Espero que os sea de interés.

Descargar (PDF, 97KB)

21 abril, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, Docencia, gestión, obras, procedimientos de construcción, programación    

Toda actividad necesita recursos para ejecutarse. La programación de los recursos disponibles constituye un tema crucial para lograr que la obra esté finalizada en los plazos y costes establecidos. Consiste en asociar los recursos a sus tareas respectivas y ver cómo se ensamblan en el conjunto de la obra. Se emplea para ello una representación gráfica de los recursos necesarios a lo largo del tiempo; recibe el nombre de diagrama de carga. Estos histogramas proporcionan un medio gráfico eficaz para observar su evolución temporal y para analizar los períodos de carencia previsibles por superposición con los diagramas de recursos disponibles (véase la figura).

La limitación de recursos en la realización de una obra provoca conflictos que pueden resolverse mediante métodos de nivelación y de asignación. Los primeros laminan el diagrama de cargas sin producir retrasos en el plazo programado. Los métodos de asignación, por otra parte, pretenden que los recursos necesarios no superen los disponibles, pero con la condición de que el retraso provocado sea el mínimo posible. Con ayuda de las diversas técnicas de redes, se habrá establecido un camino crítico y unas holguras para cada una de las actividades. La prioridad en la asignación de los recursos será mayor cuanto menor sea la holgura disponible para cada una de las actividades.

Dada la dificultad de resolver estos problemas, se suelen utilizar métodos heurísticos que proporcionan soluciones suficientemente buenas con tiempos de cálculo razonables. El método de Burgess-Killebrew para la nivelación, o el método de Wiest-Levy para la asignación de recursos constituyen algunos ejemplos de heurísticas.

El algoritmo de Burgess-Killebrew es uno de los algoritmos pioneros en este campo; está considerado también como uno de los más eficientes. El diagrama de carga del recurso busca la actividad no crítica que tenga la fecha temprana de finalización más avanzada. Esta actividad retrasa su finalización unidad a unidad de tiempo hasta agotar su holgura. Se elige como fecha más temprana de finalización de la actividad la que haga mínima la suma de los cuadrados de las cargas. Se repite esta pauta con todas las tareas no críticas, teniendo prioridad aquella actividad que posea mayor holgura, en caso de que la fecha temprana de finalización más avanzada de dos tareas coincida. Una vez realizado con todas, se vuelve a iniciar un nuevo ciclo de iteraciones hasta que finalizada una iteración no resulte posible disminuir la suma de los cuadrados de las cargas.

El algoritmo de Wiest-Levy se sustenta en la programación de las actividades que puedan realizarse con los recursos disponibles. No obstante esta programación puede ser revisada en posteriores iteraciones. Cuando la carga es superior a las disponibilidades, se recurre a retrasar alguna actividad, eligiendo entre las no críticas, la que resuelva el problema con el menor retraso. Si existen dos actividades que reúnen las mismas condiciones, se retrasa primero la de mayor holgura, con lo que las actividades críticas se retrasan cuando no hay otra opción.

Referencias:

PELLICER, E.; YEPES, V. (2007). Gestión de recursos, en Martínez, G.; Pellicer, E. (ed.): Organización y gestión de proyectos y obras. Ed. McGraw-Hill. Madrid, pp. 13-44. ISBN: 978-84-481-5641-1.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V.; PELLICER, E. (2008). Resources Management, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 165-188. ISBN: 83-89780-48-8.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Publicada By  Víctor Yepes Piqueras - Docencia, economía, empresas constructoras, gestión    

Descargar (PDF, 6.32MB)

18 abril, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Página siguiente »

Universidad Politécnica de Valencia