Editor por una semana de @cienciaUPV, en Instagram

Uno está acostumbrado a batallar como editor o revisor en revistas internacionales. Es una labor habitual para un profesor que se dedica a la investigación. Sin embargo, he recibido un encargo especial: ser editor invitado de @cienciaUPV, el perfil oficial en Instagram de la Universitat Politècnica de València dedicado exclusivamente a mostrar la actividad científica desarrollada por la institución.

La idea es muy sencilla y rompedora: cada semana, una persona distinta -siempre ligada a la actividad científica en la UPV- tomará las riendas del perfil y podrá publicar aquellas imágenes y textos que desee. Siempre, con libertad editorial para el autor y propietario de la cuenta durante esos días, tratando de conferir ese enfoque personal y único al perfil. A mí me ha tocado la semana del 18 al 24 de junio de 2018.

De este modo, el personal docente e investigador (PDI) de la UPV mostrará cómo es su día a día, sus temas y líneas de investigación, los resultados obtenidos… siempre con una perspectiva que permita a los ciudadanos acercarse y aproximarse para conocer la importancia y necesidad para la sociedad de la investigación en la universidad pública. Por supuesto, y como no puede ser de otra forma en un medio social, también tendrán cabida las reflexiones, las experiencias y cualquier publicación de corte más personal.

Esta idea supone un auténtico reto. Yo ya tengo una cuenta en Instagram @vyepesp, donde suelo subir imágenes relacionadas con la ingeniería, la arquitectura, paisajes, etc. Pero ahora el tema es diferente, se trata de difundir la investigación y las tareas habituales.

¿Por qué Instagram? El crecimiento exponencial de la plataforma Instagram en todo el mundo, con más de 800 millones de usuarios activos cada mes en la actualidad, invita a diversificar la presencia de nuestra institución en este medio social para intentar conectar con grupos de interés más específicos o poder incrementar el número de contenidos compartidos.

@cienciaUPV es una actividad financiada por la Fundación Española para la Ciencia y la Tecnología (FECYT) del Ministerio de Economía, Industria y Competitividad. Se enmarca dentro del programa de actividades del proyecto ConCiénciate: UCC+i Universitat Politècica de València que llevará a cabo el Área de Comunicación de la UPV, a través de su Unidad de Cultura Científica e Innovación (UCC+i), hasta marzo de 2019.

El proyecto incluye un gran número de actividades de comunicación y divulgación científica, como el taller Cocinando con ciencia el futuro, que tendrá lugar este viernes 25 de mayo; el programa El Laboratorio del running, que se emite todas las semanas en UPVRadio; la serie Mujeres científicas, que arrancará el próximo mes de junio; o los talleres conCiencia Química, que se llevarán a cabo durante el próximo curso académico.

Por tanto, os espero. Invitamos a toda la comunidad universitaria a seguir al perfil, interaccionar con la cuenta y, sobre todo, enviar contenidos interesantes para que puedan ser difundidos y compartidos con el mayor número de personas posibles.

Para saber más:

http://www.upv.es/noticias-upv/noticia-10073–cienciaupv-en-es.html

 

Necrológica: Ha fallecido el Profesor Carlos A. Brebbia

Carlos A. Brebbia (1948-2018)

Tengo que hacerme eco del fallecimiento del profesor Carlos A. Brebbia (1948-2018), hecho acaecido el pasado sábado 3 de marzo de 2018. Tuve la oportunidad de coincidir con él en varios congresos donde me invitó a formar parte del Comité Científico, como el “International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI“, organizados por Wessex Institute. Junto con el Profesor Santiago Hernández y los profesores Kravanja y De Wilde, formaban parte de la presidencia de estos congresos. Os dejo a continuación un breve obituario sobre su persona. Descanse en paz.

Carlos was born in Rosario, Argentina, where he completed his first engineering degree, after being educated at Military Colleges in Santa Fe and Buenos Aires. He spent two years after graduation as part of a small team setting up an Institute of Applied Mechanics. Following this he registered at the University of Southampton in England for a higher degree, arranging to carry out his research partly at MIT.  This experience set up the basis for his long and close association with the USA.

After obtaining his PhD at Southampton University he worked for the Central Electricity Research Laboratories in the UK, a leading research establishment at the time. He left the Laboratories to take up an academic position at the University of Southampton where he rose from Lecturer to Senior Lecturer and Reader. During his time at Southampton he took leave to become Visiting Professor at many other Universities, including an academic year at Princeton. After having been appointed Full Professor of Engineering at the University of California, Irvine, he decided to resign his position and return to the UK to set up the Wessex Institute, of which he was the Founder and Director.

Carlos is renowned throughout the world as the originator of the Boundary Element Method, a technique that generates important research work at the Wessex Institute. He has written many scientific papers, been author of 14 books, co-author of numerous volumes and editor or co-editor of over 500. He also published two non-scientific books, “The New Forest. A Personal View” and “Patagonia, a forgotten Land”.  A book on the Paraguayan War in the 19th Century was a work in progress at the time of his death.

He founded several successful international Journals including the International Journals of Safety and Security, Design & Nature and Ecodynamics, Sustainable Development and Planning, Computational Methods and Experimental Measurements, Energy Production and Management, Heritage Architecture, Transport Development and Integration, and the new International Journal of Environmental Impacts.

He established two International prizes, the highly regarded Prigogine Medal for Ecological Systems Research, co-sponsored by the University of Siena; and the George Green Medal, supported by Elsevier and co-sponsored by the University of Mississippi.

Carlos ran a successful WIT programme of international scientific conferences in different locations throughout the world. He helped the Institute to develop academic links with first class institutions around the world, which has resulted in many more research programmes and collaborative projects.

Carlos held many special honours, including the Medaille de la Ville de Paris, Echelon Argent; Medaille of the Masonnet Foundation, University of Liege, Belgium; Fellow of the Institution of Mechanical Engineers in the UK; Fellow, and Founding President of the American Society of Civil Engineers UK Chapter; Honorary PhD at the University of Bucharest; Fellow of the Royal Society of Arts;and Member of the European Academy of Sciences and Arts.

In parallel with his academic career, Carlos was a highly successful entrepreneur and founded the Computational Mechanics International Ltd group of companies in 1976. This group’s activities have grown to include software development, engineering consultancy, property investment and publishing. The group works closely with WIT and is responsible for the publishing programme of the Institute which includes, in addition to the conference proceedings, a series of monographs and edited books by some of the foremost scientists in the world.

Whilst we grieve the enormous loss of our Founder and Chairman, whose hard work, determination and achievements during his career are truly inspirational, we know that his earnest desire was for all that he has worked tirelessly to build over many years, to continue to flourish. To this we are firmly committed and so we welcome the continued and future collaboration of our friends and colleagues around the world.

Carlos is survived by his wife, Carolyn, his son Alexander and daughter Isabel, and six grandchildren.

Jerga, falacias y encuestas electorales: Las hipótesis en la investigación científica

Muchas veces la jerga que utilizan determinados colectivos o profesiones confunden al común de los mortales. La creación de un lenguaje jergal propio es habitual en todo grupo humano muy cerrado, con contacto estrecho y prolongado entre sus integrantes, y con una separación muy nítidamente marcada entre “dentro” y “fuera”. Un ejemplo es la jerga médica, donde la precisión necesaria para describir una enfermedad requiere de una traducción simultánea al enfermo. Otras veces existen consultores que, escudándose se neologismos, tecnicismos o anglicismos, venden mejor sus ideas o productos. No menos confuso es el lenguaje estadístico, sobre todo cuando se trata de encuestas electorales. Este lenguaje confuso, y en numerosas ocasiones deliberadamente difícil de entender, oculta ideas o conceptos sencillos. Este es el caso de las hipótesis en la investigación científica y las pruebas de hipótesis empleadas en la estadística.

Todos esperamos de un jurado que declare culpable o inocente a un acusado. Sin embargo, esto no es tan sencillo. El acusado es inocente hasta que no se demuestre lo contrario, pero el dictamen final sólo puede decir que no existen pruebas suficientes para declarar que el acusado sea culpable, lo cual no es equivalente a la inocencia. Además, es fácil intuir que el jurado no es infalible. Puede equivocarse culpando a un inocente y también absolviendo a un culpable. Lo mismo ocurre con un test de embarazo o de alcoholemia, puede dar un falso positivo o un falso negativo. ¿Que significa que una encuesta afirma que el partido “A” va a ganar las elecciones? De esto trata una prueba de hipótesis, pero vayamos por partes.

B-DERsTIQAAgORN

Una hipótesis puede definirse como una explicación tentativa de un fenómeno investigado que se enuncia como una proposición o afirmación. A veces las hipótesis no son verdaderas, e incluso pueden no llegar a comprobarse. Pueden ser más o menos generales o precisas, y abarcar dos o más variables, pero lo que es común a toda hipótesis, es que necesita una comprobación empírica, es decir, se debe verificar con la realidad. Pero ahora viene el problema: ¿en cuántos casos necesitamos para verificar una hipótesis? Siempre quedará la duda de que el caso siguiente negará lo planteado en la hipótesis. Por tanto, nos encontramos ante un método inductivo donde el reto será generalizar una proposición partiendo de un conjunto de datos, que denominaremos muestra.

Este tipo de hipótesis son, en realidad, hipótesis de investigación o de trabajo. Pueden ser varias, y suelen denominarse como H1, H2, …, Hi. Se trata de proposiciones tentativas que pueden clasificarse en varios tipos:

a) Descriptivas de un valor o dato pronosticado

b) Correlacionales

c) De diferencia de grupos

d) Causales.

En estadística, se llaman hipótesis nulas aquellas que niegan o refutan la relación entre variables, denominándose como H0. Estas hipótesis sirven para refutar o negar lo que afirma la hipótesis de investigación. Por ejemplo, si lo que quiero comprobar es la relación existente entre la relación agua/cemento con la resistencia a compresión a 28 días de una probeta de hormigón, entonces la hipótesis nula es que no existe una relación entre ambas variables. La idea es demostrar mediante una muestra que no existen pruebas suficientemente significativas para rechazar la hipótesis nula que indica que no existe relación entre dichas variables. Sin embargo, en un lenguaje menos formal, lo que realmente queremos es verificar que existe dicha relación. Sin embargo, también existen hipótesis alternativas, que son posibilidades diferentes de las hipótesis de investigación y nula. Así, si nuestra hipótesis de investigación establece que “esta silla es roja”, la hipótesis nula es “esta silla no es roja”, pero las hipótesis alternativas pueden ser: “esta silla es verde”, “esta silla es azul”, etc. Realmente, la hipótesis alternativas no son más que otras hipótesis de investigación. Curiosamente, en investigación no hay una regla fija para la formulación de hipótesis. Hay veces que sólo se incluye la hipótesis de investigación, en otras ocasiones se incluye la hipótesis nula y, en otras, también las alternativas.

Pero, ¿se puede afirmar que un partido va a ganar las elecciones según una encuesta?, o dicho de otro modo, ¿se puede probar que una hipótesis es, con toda rotundidad, verdadera o falsa? Desgraciadamente no se puede realizar dicha afirmación. Lo único que se puede hacer es argumentar, a la vista de unos datos empíricos obtenidos de una investigación particular, que tenemos evidencias para apoyar a favor o en contra una hipótesis. Cuantas más investigaciones, más credibilidad tendrá, y ello sólo será válido para el contexto en que se comprobó. De ahí la importancia de elegir una muestra que sea suficientemente representativa de la población total. Por tanto, sólo podemos argumentar la validez de las hipótesis desde el punto de vista estadístico. Las pruebas de hipótesis sirven para este cometido.

A continuación os dejo una figura donde se describe, de forma muy resumida, lo que es una prueba de hipótesis. Me gustaría que os fijaseis en que en toda prueba de hipótesis existen dos tipos de errores, el falso positivo (mandar a un inocente a la cárcel) y el falso negativo (exculpar a un culpable). Estos errores deberían ser lo más bajos posibles, pero a veces no es sencillo. Para que ambos errores bajen de forma simultánea, no hay más remedio que aumentar el tamaño de la muestra. Por este motivo, para hacer un examen lo más justo posible, éste debería aprobar a los que han estudiado y suspender a los que no. Lo mejor es que el número de preguntas sea lo más alto posible.

Por tanto, ojo cuando el titular de un periódico nos ofrezca una previsión electoral. Hay que mirar bien cómo se ha hecho la encuesta y, lo más importante, saber interpretar los resultados desde el punto de vista estadístico.

Test de hipótesis

Referencias:

Hernández, R.; Fernández, C.; Baptista, P. (2014). Metodología de la investigación. Sexta edición, McGraw-Hill Education, México.

El Plan de Estudios del Máster en Ingeniería del Hormigón

IMG_20121106_094440En este post me gustaría dar cierta información básica del Máster Oficial en Ingeniería del Hormigón que se imparte en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Se trata de un máster verificado por ANECA que deriva de la docencia impartida en el Programa de Doctorado de dicho departamento. Es un máster de orientación tanto profesional como investigadora, con una fuerte presencia de alumnos procedentes de otros países, fundamentalmente del ámbito latinoamericano y europeo. Se trata del único máster especializado en hormigón impartido en lengua española a nivel internacional. Sus profesores pertenecen todos ellos al ICITECH, Instituto de Ciencia y Tecnología del Hormigón, instituto de investigación con laboratorios e instalaciones propias para desarrollar las líneas de investigación asociadas.

Los estudios del Máster en Ingeniería del Hormigón proporcionan tanto un amplio conocimiento sobre el hormigón como material de construcción como las habilidades necesarias para el análisis y diseño de estructuras de hormigón. Estos estudios incluyen aspectos que van desde la naturaleza y propiedades químicas de los componentes que lo constituyen y las propiedades tecnológicas y de durabilidad, incluyendo la tecnología de diseño, producción y puesta en obra del hormigón, hasta los relacionados con el diseño, análisis, construcción, mantenimiento y reparación de estructuras. Todos ellos abordados  teniendo en cuenta criterios de calidad, seguridad, sostenibilidad, cooperación al desarrollo y responsabilidad social corporativa.

Los alumnos pueden acceder a este máster desde perfiles diversos, por lo que se oferta  un plan  de estudios con una adecuada y amplia optatividad que les permita construir su currículo específico dentro del mundo del hormigón y afines. Estos estudios están orientados a la formación de  investigadores, docentes y especialistas en algunos de los siguientes campos del hormigón:

1.- Propiedades físico-químicas y tecnológicas de los hormigones y sus materiales constituyentes convencionales y avanzados, su fabricación y sus aplicaciones.

2.- Propiedades físico-químicas y tecnológicas de los materiales para la reparación de construcciones de hormigón estructural y sus aplicaciones.

3.- Procedimientos constructivos, maquinaria y medios auxiliares para la construcción de estructuras de hormigón convencionales y singulares.

4.- Durabilidad de las construcciones de hormigón y medidas de protección.

5.- Aspectos medioambientales y ciclo de vida del hormigón.

6.- Evaluación y diagnóstico de construcciones de hormigón estructural, y los métodos, mecanismos y medios para su reparación y rehabilitación.

7.- Comportamiento mecánico-resistente de las construcciones de hormigón estructural, su modelización numérica y análisis experimental.

8.- Diseño, optimización y proyecto de construcciones de hormigón.

9.- Construcción industrializada y prefabricación

.facebook_2096399093El Plan de Estudios está divido en un módulo básico, de 60 créditos, que se impartirá en el primer año académico, un segundo módulo complementario, de 15 créditos, que se impartirá en el primer cuatrimestre del segundo año académico y el Trabajo de Fin de Máster, de 15 créditos, lo cual suma los 90 créditos del máster. El módulo básico se divide en tres materias de carácter común y obligatorio para todos los alumnos, cada una de ellas de 20 créditos. En dicho módulo básico se encuadrarán las materias de “Materiales constitutivos y durabilidad del hormigón”, “Análisis de estructuras de hormigón” y “Concepción y diseño de estructuras de hormigón”. Este módulo se desarrollará durante el primer curso, tanto en los cuatrimestres primero y segundo. En cuanto al módulo complementario, éste se desarrollará íntegramente en el primer cuatrimestre del segundo año, constando de una materia denominada “Complementos de construcción y tecnología del hormigón”, de 15 créditos.

Con respecto al Trabajo de Fin de Máster, no se exige un período cerrado y obligatorio para su entrega y su defensa, si bien se estima una duración de 3-4 meses. El motivo de esta atemporalidad reside en facilitar al alumno incrementar el período en el que desarrolle esta actividad minimizando el solapamiento con la docencia del primer cuatrimestre del segundo año. Por otra parte, y teniendo en cuenta que una parte importante de los Trabajos de Fin de Máster estarán fundamentados en resultados experimentales de laboratorio, será necesario prever períodos de ensayos y medidas experimentales que deberán ser coordinados con las actividades investigadoras habituales. 

A continuación tenéis un enlace embebido de la página oficial del máster donde podéis ver el Plan de Estudios e información adicional.

 

 

 

ICITECH (Instituto de Ciencia y Tecnología del Hormigón)

2013-05-03 09.20.32

El Instituto ICITECH (Instituto de Ciencia y Tecnología del Hormigón) es un Centro de Investigación de la Universidad Politécnica de Valencia creado en 2005, que agrupa a los profesores e investigadores cuya actividad investigadora se centra en el hormigón. Actualmente forman parte del instituto un total de 63 miembros, de los cuales 32 son profesores, 14 son investigadores contratados y el resto personal técnico de apoyo a la investigación y de administración.

La finalidad del Instituto es la investigación del hormigón, tanto desde el punto de vista de los materiales constituyentes como el de las estructuras, en una amplia gama de aspectos como el proceso de fabricación, el comportamiento fisco-químico, mecánico o medioambiental, la sostenibilidad o el comportamiento, diseño, construcción y mantenimiento de las estructuras.
Los objetivos son fomentar y promover la investigación de calidad a través de la realización de proyectos de I+D, potenciar la investigación aplicada, la transferencia de tecnología y de conocimiento a las empresas afines y la participación de socios industriales.

Las instalaciones de ICITECH se ubican en un nuevo edificio que alberga una gran losa de carga de 500 m2 junto con un muro de reacción horizontal en L de 14×6 m y 13 m de altura y con puntos de anclaje tanto en la losa como en el muro de 500 kN situados a un metro de distancia entre sus ejes. Además, dispone de una instalación oleohidráulica constituida por 6 grupos motobomba que proporcionan 250 bares un caudal de 1560 litros/min y dos puentes grúa de 10 t cada uno que permite manejar elementos de hasta 20 t por toda la superficie de la nave. Este conjunto permite realizar ensayos a escala real de estructuras con muy diversas tipologías de carga. Además de esta gran instalación, el edificio incluye laboratorios de química y de materiales con un total de 175 m2, tres cámaras húmedas: una de 117 m3 y dos de 57 m3, central de aire comprimido, gas natural, dióxido de carbono y aire seco.

 

Os paso a continuación un pequeño dossier que hemos preparado para explicar lo que hace nuestro grupo de investigación sobre optimización heurística relacionado con temas de hormigón (proyecto HORSOST) y con el mantenimiento de activos e infraestructuras. Esta actividad se encuentra enmarcada dentro del ICITECH, del Máster Oficial en Ingeniería del Hormigón (acreditado con el sello EUR-ACE)  y del Programa de Doctorado en Ingeniería de la Construcción de la Universidad Politécnica de Valencia (verificado por ANECA).

Descargar (PDF, 5.75MB)

¿Qué es la metodología de la superficie de respuesta?

La Metodología de la Superficie de Respuesta (RSM) es un conjunto de técnicas matemáticas y estadísticas utilizadas para modelar y analizar problemas en los que una variable de interés es influenciada por otras.  El propósito inicial de estas técnicas es diseñar un experimento que proporcione valores razonables de la variable respuesta y, a continuación, determinar el modelo matemático que mejor se ajusta a los datos obtenidos. El objetivo final es establecer los valores de los factores que optimizan el valor de la variable respuesta. Esto se logra al determinar las condiciones óptimas de operación del sistema.

La diferencia entre (RSM) y un diseño experimental corriente estriba en que un diseño experimental por si solo tiene como objetivo localizar el tratamiento “ganador” entre todos aquellos que se han probado. En cambio, RSM pretende localizar las condiciones óptimas de operación del proceso. Ello supone un reto para el investigador, requiere una estrategia más completa e incluye la posibilidad de efectuar varios experimentos secuenciales y el uso de técnicas matemáticas más avanzadas.

Os dejo a continuación un vídeo explicativo que espero os aclare la metodología.

Referencias:

  • Box, G. E. P., Wilson, K. G. (1951), On the experimental attainment of optimum conditions,Journal of the Royal Statistical Society, B 13, 1-45
  • Cornell, John A. (1984), How to apply Response Surface Methodology, American Society for Quality Control, Milwaukee, WI.
  • Kuehl, Robert O. (2001) Diseño de Experimentos, 2a. Edición, Thomson Learning.
  • Melvin T. A. Response Surface Optimization using JMP Software, < http://www2.sas.com/proceedings/sugi22/STATS/PAPER265.PDF>
  • Montgomery, D. C. (2002), Diseño y Análisis de Experimentos, Editorial Limusa, Segunda Edición.
  • http://www.cicalidad.com/articulos/RSM.pdf
  • http://catarina.udlap.mx/u_dl_a/tales/documentos/lii/peregrina_p_pm/capitulo2.pdf

¿Qué es el ORCID?

OrcidEl post de hoy va dedicado a aquellos de vosotros que os dedicáis a la investigación científica. Vamos a hablar de ORCID,  que es un proyecto abierto, sin ánimo de lucro, comunitario, que ofrece un sistema para crear y mantener un registro único de investigadores y un método claro para vincular las actividades de investigación y los productos de estos identificadores.  ORCID es único por su capacidad de aplicarse a todas las disciplinas, sectores de investigación y fronteras nacionales. Es un centro que conecta a los investigadores y la investigación a través de la incorporación de identificadores ORCID en flujos de trabajo clave, tales como el mantenimiento de los perfiles de investigación, las presentaciones manuscritas, las solicitudes de subvención y las solicitudes de patentes.

En mi caso particular, mis registros de investigador son los siguientes:

orcid.org/0000-0001-5488-6001

Scopus Author ID 23487457600

ResearcherID K-9763-2014

 

Para que tengáis más información, os dejo los siguientes vídeos explicativos:

HORSOST: Un proyecto de investigación sobre sostenibilidad y estructuras

2013-05-03 09.20.32
Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

Creo interesante comentar en este post los resultados que estamos obteniendo de un Proyecto de Investigación financiado por el Ministerio de Ciencia e Innovación que nuestro grupo de investigación llama HORSOST. Su nombre completo describe el contenido del trabajo que estamos desarrollando: “Diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos“.

Se trata de un proyecto que empezamos en el año 2012 y que tiene prevista su finalización a finales del 2014. Nuestro grupo de investigación está formado por seis profesores y varios becarios de investigación del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de  la Universidad Politécnica de Valencia. En dicho grupo me corresponde el papel de investigador principal. Espero que esta breve descripción os oriente sobre lo que estamos haciendo.

Este proyecto de investigación se encuentra relacionado con otros ya finalizados y otros en marcha, tanto de convocatorias competitivas como de convenios de transferencia tecnológica con empresas (constructoras, empresas de prefabricados, consultoras, etc.).

El objetivo fundamental del proyecto de investigación HORSOST consiste en Continue reading “HORSOST: Un proyecto de investigación sobre sostenibilidad y estructuras”

Tatiana García Segura, primer premio Cemex en sostenibilidad

http://catcemexsost.webs.upv.es/

Hoy me toca hablar de Tatiana García Segura. Es una brillante ingeniera de caminos, canales y puertos, máster en ingeniería del hormigón e investigadora en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH), que acaba de ganar el primer premio de la Cátedra CEMEX SOSTENIBILIDAD a su Tesis Fin de Máster en materia de sostenibilidad y medio ambiente presentada en el curso 2012-13. La tesis se denomina “Métricas para el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo”, dirigida por Víctor Yepes Piqueras y Julián Alcalá González. Dicho trabajo obtuvo la calificación de 10 sobresaliente con matrícula de honor. De este trabajo ya se han aceptado varios artículos internacionales en revistas científicas de primer nivel. Este premio constituye un espaldarazo al proyecto de investigación HORSOST (BIA2011-23602), financiado por el Ministerio de Ciencia e Innovación, de la cual Tatiana es becaria FPI y yo mismo investigador principal. En este momento Tatiana está desarrollando su tesis doctoral aplicando los resultados obtenidos de su trabajo en el diseño automático de puentes óptimos postesados de sección en cajón basándose en criterios sostenibles multiobjetivo aplicado al ciclo completo de vida de la estructura y utilizando hormigones no convencionales. Continue reading “Tatiana García Segura, primer premio Cemex en sostenibilidad”

Definiciones básicas del diseño de experimentos

Entendemos por experimento al cambio en las condiciones de operación de un sistema o proceso, que se hace con el objetivo de medir el efecto del cambio en una o varias variables del producto. Ello nos permite aumentar el conocimiento acerca del sistema o del proceso.  Asimismo, entendemos por “diseño de un experimento” la planificación de un conjunto de pruebas experimentales, de forma que los datos generados puedan analizarse estadísticamente para obtener conclusiones válidas y objetivas acerca del problema establecido.

En un experimento es muy importante su reproducibilidad, es decir, poder repetir el experimento. Ello nos proporciona una estimación del error experimental y permite obtener una estimación más precisa del efecto medio de cualquier factor.

 

Veamos algunas definiciones importantes en el diseño de experimentos: Continue reading “Definiciones básicas del diseño de experimentos”