Publicada By  Víctor Yepes Piqueras - costes, ferrocarril, hormigón, maquinaria, procedimientos de construcción    

Vía en placa de hormigón en Alemania. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Feste_Fahrbahn_FFB%C3%B6gl.jpg

Vía en placa de hormigón en Alemania. Fuente: https://es.wikipedia.org

La concepción de la superestructura del ferrocarril presenta ciertas semejanzas de evolución conceptual e histórica respecto a la de las carreteras. De hecho, el dualismo existente en los firmes de carreteras referido a los firmes flexibles y los rígidos, puede extenderse, de alguna forma, al existente en la tecnología del ferrocarril respecto a la superestructura de vía con balasto o sin él, es decir, con vía en placa. El debate entre el uso del balasto o de la vía en placa es un debate abierto (Puebla et al., 2000), donde los condicionantes técnicos, funcionales y económicos cobran especial importancia, especialmente cuando se refieren a las líneas de alta velocidad.

La superestructura de balasto presenta, sin duda, ventajas importantes como son los costes de construcción menores que las alternativas sin balasto, la posibilidad de modificar la situación de la vía sin causar problemas de explotación, la regulación sencilla de la altura en caso de asientos de terraplenes, una buena amortiguación acústica y una conservación avalada por la experiencia, con medios mecanizados (Estrade, 1991). Países mediterráneos como Francia, Italia o España han sido partidarios del balasto debido, entre otras causas, a la calidad de los yacimientos de rocas silíceas que permiten, según indican Puebla et al. (2000) una adecuada relación comportamiento/coste. Además, como indica Melis (2006a), los grandes descensos de los terraplenes impiden en ocasiones poner vía en placa sobre ellos. Ello supone, de hecho (Melis, 2006b) la práctica eliminación de los terraplenes altos en las líneas de alta velocidad, reduciendo su altura a 9 m y su asiento a 30 mm, bajando rasantes y alargando túneles.

Sin embargo, uno de los problemas más importantes de las líneas de alta velocidad es el mantenimiento de la calidad de la vía sobre balasto. Este hecho se constató ya en la línea del Tokaido, en Japón, en el año 1964, para velocidades máximas de 210 km/h. El mantenimiento de la calidad geométrica de la vía obliga a operaciones mecanizadas de mantenimiento. Esta dificultad, además, suele ser mayor en infraestructuras difíciles como puentes y túneles. Así, ya en 1924 en un túnel japonés se sustituyó el balasto por unos bloques de madera embebidos en hormigón, formando un basamento bajo cada carril para evitar los problemas con los flujos de agua. Por tanto, la necesidad de una alternativa al balasto se reveló como importante, a pesar de que dicha tecnología también presentaba problemas a resolver. Esta necesidad de un sistema de vía distinto al tradicional ya se puso de manifiesto en 1971 en el estudio HSB (ver Escolano, 1998) para velocidades superiores a los 200 km/h. Ello se debe a que el esfuerzo dinámico aumenta con la velocidad del tren y depende de la calidad posicional de la vía. Es por ello que Alemania adoptó la decisión de aplicar este tipo de montaje en todas sus nuevas líneas de alta velocidad. A todo ello habría que añadir el efecto del schotterflug o “vuelo del balasto” arrastrastrado en el caso de trenes circulando a elevada velocidad (Melis, 2006b).

Vista de como se construye la vía, las armaduras posicionan las traviesas y luego serán hormigonadas. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Schwellen_Rheda.jpg

Vista de como se construye la vía, las armaduras posicionan las traviesas y luego serán hormigonadas. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Schwellen_Rheda.jpg

Los elementos constitutivos de la vía en placa lo forma la plataforma, la solera, la placa soporte, la fijación del carril, la soldadura en barra larga y los elementos adicionales. Una ventaja que caracteriza a la vía en placa es que, frente a la rodadura, el sistema presenta una elasticidad y una amortiguación independiente de la climatología, con una alta disponibilidad para el servicio del vial, con un buen comportamiento ante la dinámica de la marcha, y por tanto, y bajo mantenimiento (Escolano, 1998). Además, las proyecciones de balasto quedan descartadas, precisan de una sección menor de los túneles, se adapta mejor al terreno y el comportamiento se garantiza para velocidades menores a 300 km/h (Escolano, 1998). Otro aspecto de gran importancia es, tal y como indica López-Pita (2001), la cuantificación de la rigidez vertical de la vía. Se trata de un indicador clave en los fenómenos de interacción vía-vehículo, y por tanto, en el deterioro de la vía, especialmente importante en las líneas de alta velocidad. En este sentido, López-Pita (2001) indica que la degradación de la capa de balasto por causa de las vibraciones generadas por el material ferroviario, especialmente en líneas de alta velocidad, podría limitarse con el empleo de vía en placas de asiento de elevada elasticidad. En este sentido, Sheng et al. (2004) comentan que la placa en vía puede reducir el nivel de vibración frente al balasto en el caso de presencia de irregularidades verticales. La solución de vía en placa es más cara de construcción, pero más económica en su mantenimiento. Así por ejemplo, Esveld (2001) indica que este coste de mantenimiento puede reducirse hasta un 70-90%. El encarecimiento se debe, fundamentalmente, a los bajos rendimientos. Además, el rectificado y ajustado del posicionamiento del carril se mueve dentro de límites muy estrictos.

Lei y Zhang (2011) presentaron un modelo de análisis dinámico que le permitió desarrollar un nuevo tipo de placa para vía. Poveda et al. (2015) han presentado recientemente un estudio numérico sobre fatiga en el diseño de placas para vía. Parte de estos autores presentaron también un diseño experimental que comprobaba el comportamiento a fatiga de estos elementos (Tarifa et al., 2015). El Ministerio de Fomento (2014), elaboró una monografía sobre la aplicación de los Eurocódigos para el cálculo de puentes de ferrocarril, centrándose en la vía en placa en aquellos aspectos no contradictorios con dichos códigos.

Puebla et al. (2000) indican cuatro grupos de sistemas de vía en placa: construcción en capas, construcción monolítica, construcción por bloques recubiertos de elastómero y sistemas de construcción especiales. En cualquier caso, el problema más importante que afecta a la viabilidad económica de la vía en placa es su materialización, es decir, los costes elevados derivados de su construcción. Las causas del bajo rendimiento y del elevado coste del montaje de vía sobre placa se debe fundamentalmente a dos motivos. El primero al propio montaje de la vía a su posición teórica definitiva, con un elevado grado de precisión y tolerancias muy restrictivas. Así, el hormigonado tradicional permite un rendimiento de 150 a 200 m/día, muy por debajo de los rendimientos en balasto, que pueden ser más de 1000 m/día. Incluso con el método Alemán, que consiste básicamente en introducir un tren de mezcladoras por una vía auxiliar -construida expresamente a tal efecto- y bombear el contenido de forma íntegra, los rendimientos no superan los 175 a 250 m/día. Es evidente que es necesario un salto tecnológico para superar esta barrera en los rendimientos para ser competitivo económicamente frente al balasto.

Os dejo a continuación un vídeo sobre el hormigonado tradicional de la vía en placa. Espero que os guste

Referencias:

  • Escolano, J. (1998). La “vía en placa” en la DB AG. Revista de Obras Públicas, 145(3382):21-34.
  • Estrade, J.M. (1991) La superestructura de vía sin balasto: perspectivas de su aplicación en las nuevas líneas de alta velocidad. Revista de Obras Públicas, 138(3305):9-28.
  • Estrade, J.M. (1998) La superestructura de vía en placa en las nuevas líneas de alta velocidad de nuestro país. Revista de Obras Públicas, 145(3372):63-74.
  • Esveld, C. (2001). Modern railway track. 2nd ed. The Netherlands: Delft University of Technology.
  • Lei, X.; Zhang, B. (2011). Analysis of dynamic behavior for slab track of high-speed railway base don vehicle and track elements. ASCE Journal of Transportation Engineering, 137(4): 227-240.
  • López-Pita, A. (2001). La rigidez vertical de la vía y el deterioro de las líneas de alta velocidad. Revista de Obras Públicas, 148(3415):7-26.
  • Melis, M. (2006a). Terraplenes y balasto en la alta velocidad ferroviaria (primera parte). Revista de Obras Públicas, 153(3464):7-36.
  • Melis, M. (2006b). Terraplenes y balasto en la alta velocidad ferroviaria. Segunda parte: Los trazados de Alta velocidad en otros países. Revista de Obras Públicas, 153(3468):7-26.
  • Ministerio de Fomento (2014). Documentos complementarios no contradictorios para la aplicación de los Eurocódigos para el cálculo de puentes de ferrocarril. Centro de Publicaciones, 211 pp.
  • Poveda, E.; Yu, R.C.; Lancha, J.C.; Ruíz, G. (2015). A numerical study on the fatigue life design of concrete slabs for railway tracks. Engineering Structures, 100:455-467.
  • Puebla, J.; Fernández, A.; Gilaberte, M.; Hernández, S.; Ruíz, A. (2000). Para altas velocidades ¿Vía con o sin balasto? Revista de Obras Públicas, 147(3401): 29-40.
  • Sheng, X.; Jones, C; Thompson, D. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration, 272(3–5):937–65.
  • Tarifa, M.; Zhang, X.; Ruíz, G.; Poveda, E. (2015). Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Engineering Structures, 100: 610-621.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

11 agosto, 2016
 
|   Etiquetas: ,  ,  ,  ,  |