Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, prefabricación, sostenibilidad    

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (I)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

Introducción

Figura 1.- Ciclo de vida que ilustra el proceso complete de la construcción mediante el empleo de elementos Prefabricados de hormigón

Figura 1.- Ciclo de vida que ilustra el proceso completo de la construcción mediante el empleo de elementos prefabricados de hormigón

La mayoría de avances alcanzados relacionados con los métodos estandarizados para cuantificar la sostenibilidad de la construcción, están fundamentalmente enfocados a la edificación más que a las infraestructuras, especialmente en su variante residencial. El impacto global de la edificación residencial es el mayor de todos, pues implica a los tres ejes de la sostenibilidad: medioambiental (emisiones de gases de efecto invernadero, derivados de los consumos de calefacción y/o refrigeración para lograr unas condiciones interiores confortables), social (la vivienda es una primera necesidad para las personas) y económico (suele representar el mayor gasto que afronta una persona a lo largo de su vida).

Mientras tanto, la obra civil no ha evolucionado igualmente en esta materia. Aunque generalmente se trata de construcciones de mayor envergadura, los impactos sobre la sostenibilidad son mucho más difusos y no tienen una repercusión tan directa sobre la vida diaria de los ciudadanos.

Por estas razones, puede explicarse que los métodos de evaluación de la sostenibilidad para la obra civil no estén tan desarrollados como los existentes en la edificación, incluso con cierta dificultad para encontrar referencias sobre este campo. Esto puede implicar de alguna forma un obstáculo para la promoción técnica de los elementos prefabricados de hormigón, en un área que suele estar dominado por ingenieros que, en general, saben apreciar mejor las ventajas funcionales que esta metodología constructiva ofrece con respecto a otras.

Este artículo pretende describir las fortalezas que la construcción con prefabricados de hormigón tendrá en el inminente marco reglamentario sobre la sostenibilidad en la obra civil, como vía para mejorar sus posibilidades y lograr una mayor cuota de mercado. También se analizarán algunos de los indicadores de la sostenibilidad que ya aparecen en los borradores de normas actuales.

ala014

La razón de la sostenibilidad

Los conceptos de sostenibilidad y desarrollo sostenible se mencionan en casi cualquier actividad que esté relacionada con el uso de recursos, consumo de energía o el ambiente exterior. Pero ninguno de ellos son términos nuevos, habiendo evolucionado notablemente en las últimas décadas hasta el punto de tener una enorme importancia en muchas decisiones que se toman actualmente, especialmente en aquellos países o economías más avanzadas en las que existe una creciente preocupación por las consecuencias del cambio climático, la escasez de energía o el crecimiento demográfico.

La construcción tiene una tremenda influencia analizada desde los puntos de vista económicos (por su peso en el PIB), sociales (como generador de empleos, o como medio para resolver algunas necesidades básicas como la vivienda, o la creación de infraestructuras) y medioambiental (uso de recursos naturales, energía, o posibles daños al ambiente).

Las administraciones públicas son cada vez más conscientes acerca de que el modelo actual y reciente de construir puede (y debe) mejorar mucho:

  • Gases de efecto invernadero: ↓ 30 – 40%
  • Consumo de agua: ↓ 12 – 20%
  • Consumo de energía primaria: ↓ 35 – 40%
  • Consumo de materias primas: ↓ 30 – 40%
  • Ocupación del suelo: ↓ 20%

Es evidente que construyendo de forma más ecológica se conseguirá una notable reducción del impacto para lograr los objetivos marcados por los gobiernos y la sociedad en su conjunto. Sin embargo, la mayoría de los criterios calificados como sostenibles en la construcción no son nuevos, siendo muchos de ellos ya utilizados desde el pasado cuando seguramente se hacía un consumo más responsable de los recursos disponibles, bien porque no había otra posibilidad o bien porque no existía esa cultura que ha llevado a ciertos excesos arquitectónicos tan habituales en tiempos recientes.

Hay que remarcar igualmente que el enfoque sostenible puede correr cierto riesgo de ser malinterpretado, si se utiliza de manera desproporcionada. Vivimos una época en la que muchos productos de construcción son presentados directamente como el adalid de la sostenibilidad, algo que conlleva a pensar que debería realizarse un uso más moderado del término. Debemos ser muy cautos con la interpretación del término, así como con todo aquello que se nos presente como sostenible, debiendo ponerse siempre en el contexto adecuado. Es el caso, por ejemplo, de la madera que se presenta (casi) siempre como el material de construcción más sostenible, sin tener en consideración ningún otro factor como el marco climático, social, económico e incluso cultural del lugar donde se emplee, lo que provoca escepticismo en muchas ocasiones acerca de la validez del propio concepto.

Métodos de evaluación de la sostenibilidad

Existen ya un buen número de metodologías para evaluar cuánto tiene de sostenible un edificio o una infraestructura. Éstas pueden clasificarse como metodologías privadas o bajo procedimientos normalizados. Respecto a los sistemas privados de certificación, deben destacarse BREEAM [1] que fue el primer método de evaluación de la sostenibilidad de los edificios, desarrollado en el Reino Unido en 1990 por el Building Research Institute; y la herramienta LEED [2], desarrollada en 1996 y operada por el U.S. Green Building Council. Ambos sistemas de certificacion están expandidos a nivel mundial. Otros sistemas conocidos son el SBTool (Canada), HQE (Francia) o el DGNB (Alemania). Un aspecto común a todos ellos es que están orientados a edificación.

Respecto a modelos de evaluación de la sostenibilidad de infraestructuras, pueden destacarse los programas CEEQUAL y SUNRA.

La reciente proliferación de este tipo de procedimientos provoca cierta dificultad en realizar comparaciones comprensibles entre distintos programas, e incluso entre una construcción ecológica frente a la tradicional. Para hacer frente a esta gran cantidad de métodos de cuantificación de la sostenibilidad, las dos principales organizaciones mundiales de normalización, CEN (Europa) e ISO (Internacional) han comenzado a desarrollar sus propias normas. En el caso de ISO, los comités que tratan con aspectos de construcción sostenible son los TC207, ISO TC59 SC17 e ISO TC71SC8. En cuanto a CEN, se hace a través del comité TC 350, dividido en seis grupos de trabajo siendo el WG6 el dedicado a la obra civil

Los métodos de evaluación de la sostenibilidad en los tres ejes – medioambiental, social y económico – de las obras de ingeniería civil establecidos en las normas tienen en cuenta los aspectos de comportamiento y los impactos para que puedan ser cuantificados, sin lugar a interpretaciones subjetivas y conducentes a resultados claros de cada indicador que se evalúe.

Las normas ISO 21931-2 [3] y EN 15643-5 [4] son las que establecen el marco que definen los métodos de evaluación de la sostenibilidad de las infraestructuras. Ambas normas se encuentran todavía en fase de análisis, por lo que aún habrá que esperar 1 o 2 años hasta su aprobación.

En lo que se refiere a nivel de productos o elementos constructivos, se deben destacar las normas ISO 21930 [5] y EN 15804 [6]. Ambas normas presentan un esquema similar. Las dos proporcionan las reglas de categoría de producto (acrónimo en inglés, PCR) básicas para llevar a cabo las declaraciones ambientales (acrónimo en inglés, EPD) o etiquetas Tipo III de cualquier producto o servicio de construcción, definiendo los parámetros a declarar y la forma en que se recopilan y se consignan en los informes, las etapas del ciclo de vida de un producto que hay que considerar, o las reglas para el desarrollo de escenarios. Estas normas establecen la base para estimar los valores que corresponden a más de 20 indicadores ambientales, los cuales pueden organizarse en tres categorías:

  • Indicadores de impacto ambiental: potencial de calentamiento global; potencial de agotamiento de la capa de ozono estratosférica; potencial de acidificación de tierra y agua; etc.
  • Indicadores de uso de recursos: uso de energía primaria renovable; uso de energía primaria no renovable, uso neto de agua corriente; etc.
  • Indicadores que describen categorías de residuos: residuos peligrosos y no peligrosos vertidos; residuos radiactivos vertidos; etc.

En este sentido, hay que aclarar que la evaluación del comportamiento social y económico a nivel de producto todavía no está cubierta en las normas, al menos a nivel europeo.

Y de manera más particular, debe destacarse el hecho importante de que el Comité Europeo de Normalización para los productos prefabricados de hormigón, el CEN/TC 229, acaba recientemente de iniciar los trabajos que llevarán a definir una norma específica que establezca las reglas de categoría de producto para la emisión de declaraciones ambientales de producto tipo III para tales productos prefabricados.

Debe también remarcarse otro hecho significativo. Frente a la estrategia seguida por la mayoría de materiales de construcción que sólo declaran los parámetros medioambientales hasta el final del proceso productivo sin tener en cuenta los impactos del resto del ciclo de vida, lo que se conoce como de “cuna a puerta”, las declaraciones ambientales de los productos prefabricados de hormigón se basarán en el ciclo completo, es decir, la opción denominada “de cuna a tumba”, permitiendo que todos los consumidores conozcan todos los impactos obtenidos en el ciclo de vida total, incluso hasta la fase de demolición o deconstrucción de la obra, o la posible reutilización de elementos en otra construcción en el futuro.

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.

31 julio, 2016
 
|   Etiquetas: ,  ,  ,  |