El impacto de las edificaciones en el medio ambiente

Edificios modernos de Lima. Autor: Luis Perales. https://commons.wikimedia.org/wiki/File:Edificios_de_Lima_Peru.jpg

La presión demográfica mundial provoca la necesidad imperiosa de buscar alternativas sostenibles en la construcción de edificios. Efectivamente, para el año 2050 se espera que la población mundial alcance los 8900 millones de personas [1], aunque otros estudios indican que en el año 2030 esta cifra será de 9000 millones [2]. El impacto que supone esta fuerte demanda de viviendas al cambio climático es de una magnitud sin precedentes. Según datos de la UNEP (Programa de las Naciones Unidas para el Medio Ambiente) y de la OCDE (Organización para la Cooperación y el Desarrollo Económicos), el entorno edificado, representa un consumo de energía del 25 al 40%, una carga de residuos sólidos del 30 al 40% y una carga de emisión de gases de efecto invernadero del 30 al 40% [3]. En 2007, el entorno edificado consumió cerca del 47% de la energía total en China [4]. En el año 2004, los edificios agotaron, por sí solos, casi el 37% de toda la energía mundial y se espera que esta cifra alcance el 42% en el año 2030 [5]. En la India, el 24% de la energía primaria y el 30% de la energía eléctrica se consume en los edificios [6]. Casi el 10-20 % de la energía total se consume durante la construcción de los edificios, en función de las cantidades y tipos de materiales empleados, tipología de los edificios , los requisitos funcionales, la demanda de energía eléctrica y la vida útil considerada [6,7]. Algunos estudios indican que un edificio con una vida útil entre 40 y 50 años gasta durante su uso entre el 52 y el 82% de toda la energía consumida durante su ciclo de vida. A todo ello hay que añadir que una parte muy importante de los productos que se incorporan en un edificio no se ejecutan “in situ”, representando un 75% de la energía necesaria para la construcción, pues son materiales con una alta demanda de energía en su fabricación [8,9].

La industria de la construcción, junto con sus industrias auxiliares, es uno de los mayores consumidores de recursos naturales, tanto renovables como no renovables, que está alterando negativamente el medio ambiente. Agota 2/5 partes de los áridos y 1/4 de la madera, y consume el 40 % de la energía total y el 16 % de agua al año [10,11]. El uso de materiales crece constantemente, con más de 23 mil millones de toneladas de hormigón producido anualmente [12,13]. En 2010, de acuerdo con la International Cement Review [14], la producción mundial de cemento se elevó a alrededor de 3,3 millones de toneladas/año , lo que significa un aumento más del 100% en casi 10 años. La producción mundial de cemento llegó a 1,6 mil millones de toneladas/año en 2001 , lo que corresponde a aproximadamente el 7 % de la cantidad mundial de dióxido de carbono liberado a la atmósfera [15,16]. Otros estudios indican que la contribución de la industria cementera a las emisiones de gases de efecto invernadero supera el 5% del total [17]. En Australia, para mantener la demanda en la construcción, se necesitan cada año aproximadamente 30 millones de toneladas de productos, más del 56 % de esta cantidad es hormigón, y el 6%, acero [18].

¿Qué podemos hacer ante este panorama? Evidentemente, es preciso un cambio de actitud a nivel mundial. La construcción y uso de los edificios va a ser creciente, como acabamos de ver. Por tanto, se hace necesaria la optimización de los recursos para que los impactos sean lo menores posibles. A modo de ejemplo, Struble y Godfrey [19] compararon el impacto ambiental producido por una viga de hormigón y otra de acero. Las de hormigón consumen menos energía y contaminan menos los recursos hídricos, sin embargo, presentan un 10% más de emisiones de CO2, aunque requieren un 60% menos de extracción de minerales [20]. Otras posibilidades pasan por la optimización en el diseño de los edificios [21-27]. Nuestro grupo de investigación ha trabajado durante estos últimos años en esta línea [28-35]. Otras líneas de trabajo tienen que ver con la certificación energética de los edificios [36]. En este sentido, La Comisión Europea, con el fin de racionalizar el uso de la energía en los edificios y aumentar su eficiencia energética, propuso la Directiva 2002/91/CE, que fue refundida en la Directiva 2010/31/UE del Parlamento Europeo y del Consejo.

Referencias:

[1] Kates, R.W. (2000). Population and consumption: what we know, what we need to know. Environment: Science and Policy for Sustainable Development, 42(3):10-19.

[2] Fernández-Solís, J. (2007). Analysis of the forces in the exponentialoid growth in construction, in: COBRA 2007, RICS Foundation.

[3] Oteiza, I.; Alonso, C. (2008). Análisis y revisión de herramientas para evaluación de la sostenibilidad de la construcción. Actas de las II Jornadas de Investigación en Construcción, pp. 1149-1166. Madrid.

[4] Wang T H (2005). China: Building a Resource-Efficient Society. China Development Forum 2005. Beijing.

[5] Urge-Vorsatz, D.; Novikova, A. (2006). Opportunities and costs of carbon dioxide mitigation in the worlds domestic sector, in: International Energy Efficiency in Domestic Appliances and Lighting Conference ‘06, London, UK.

[6] Ramesh, T.; , Prakash, R.;  Shukla, K.K. (2013). Life cycle energy analysis of a multifamily residential house: a case study in Indian context, Open Journal of Energy Efficiency 2: 34–41.

[7] Bansal, D. et al. (2010). Embodied energy in residential cost effective units-up to 50 m2, in: International Conference on Sustainable Built environment(ICSBE-2010), Kandy, Sri Lanka 13–14 December.

[8] Ding, G. (2004). The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities, Ph.D. Thesis, University of technology, Sydney, Australia.

[9] Spence, R.;  Mulligan, H. (1995). Sustainable development and the construction industry, Habitat International 19 (3): 279–292.

[10] Lippiatt, B.C. (1999). Selecting cost effective green building products: BEES approach. J Constr Eng Manage 1999;125:448–55.

[11] Chong, W.K.; Kumar, S.; Haas, C.T.; Beheiry, S.M.A.; Coplen, L.; Oey, M. (2009). Understanding and interpreting baseline perceptions of sustainability in construction among civil engineers in the United States. J Manage Eng, 25(3):143–54.

[12] Schokker A.J. (2010). The sustainable concrete guide: strategies and examples. 1 ed. U.S.G.C. Council; 2010. Michigan: U.S. Green Concrete Council.

[13] World Business Council for Sustainable Development (WBCSD) (2006). Cement Industry Energy and CO2 Performance: Getting the Numbers Right; Geneva: World Business Council for Sustainable Development, (WBCSD).

[14] Intercement. Annual Report 2010: how the cement market works. <http://www.intercement.com/RS2010/pt/como-funciona-o-mercado-cimenteiro/>

[15] Mehta, P.K. (2001). Reducing the environmental: concrete can be durable and environmentally friendly. Concr Int:61–66.

[16] Bremner, T.W. (2001). Environmental aspects of concrete: problems and solutions. In: Proceedings of first all-Russian conference on concrete and reinforced concrete, Moscow, Russia.

[17] Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329

[18] Walker-Morison, A.; Grant, T.; McAlister, S. (2007). The environmental impact of building materials. Environment design guide. PRO 7.

[19] Struble, L.; Godfrey, J. (2004). How sustainable is concrete? In: Proceedings of international workshop on sustainable development and concrete technology, Beijing, China: 2004.

[20] Miller, D.; Doh, J.H.; Mulvey, M. (2015). Concrete slab comparison and embodied energy optimisation for alternate design and construction techniques. Construction and Building Materials, 80:329-338

[21] Yeo, D.; Gabbai, R.D. (2011). Sustainable design of reinforced concrete structures through embodied energy optimization. Energy and buildings, 43(8): 2028-2033

[22] Medeiros, G.F.; Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59:185-194.

[23] Bansal, D.; Singhc, R.; Sawhney, R.L. (2014). Effect of construction materials on embodied energy and cost of buildings—A case study of residential houses in India up to 60 m2 of plinth area. Energy and Buildings, 69:260-266.

[24] Asif, T. Muneer, R. Kelley, Life cycle assessment: a case study of a dwelling home in Scotland, Building and Environment 42 (2007) 1391–1394.

[25] Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42:1238–1247.

[26] Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16:3730-3743.

[27] Foraboschi, P; Mercanzin, M.; Trabucco,D. (2014). Sustainable structural design of tall buildings based on embodied energy. Energy and Buildings, 68:254-269.

[28] YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, (accepted, in press).

[29] GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)

[30] YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)

[31] GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)

[32] MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)

[33] YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)

[34] PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete  Frames by Simulated Annealing. Engineering Structures, 31(7): 1501-1508. ISSN: 0141-0296. (link)

[35] PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)

[36] OWENSBY-CONTE, D.; YEPES, V. (2012). Green Buildings: Analysis of State of Knowledge. International Journal of Construction Engineering and Management, 1(3):27-32. doi: 10.5923/j.ijcem.20120103.03. (link)

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.