Suelo reforzado con geosintéticos

Figura 1. Detalle de la estructura de un muro reforzado con geotextil. Fuente: geotexan.com

También se pueden construir muros compuestos por geosintéticos resistentes a las tracciones producidas por la presión del suelo (Figura 1). Se pueden utilizar en los muros distintos tipos de geosintéticos: los geotextiles, las geomallas y los geocompuestos de refuerzo.

El geotextil es un material textil plano, permeable, deformable, formado por fibras poliméricas. Su función es la de refuerzo, trabajando a tracción, además de evacuar el agua. Se introduce una longitud mínima de anclaje para evitar deslizamientos (Figura 2). El refuerzo se introduce junto con el relleno en capas de unos 50 cm, coincidiendo con el espesor del terraplenado. Son muros económicos y fáciles de construir. Presentan una gran flexibilidad y deformación. Además, la capa de geotextil puede convertirse en una superficie débil que favorezca los desplazamientos. Otro inconveniente es la susceptibilidad del geotextil a componerse ante la luz solar. A menudo se hidrosiembra el paramento visto para formar un muro vegetalizado (Figura 2).

Figura 2. Longitud de anclaje del geotextil. Fuente: https://geosynthetics.files.wordpress.com

Las geomallas también se puede reforzar el suelo utilizando una malla metálica, capaz de dar cierta rigidez al terraplén. Su función es la misma que el geotextil y se usan cuando la tracción requerida es mayor a la del geotextil. De este modo, las capas no constituyen superficies de debilidad, aunque el efecto de anclaje es menor al de los geotextiles. El inconveniente es que hay que prever la corrosión del material que forma la malla, así como que no corta por capilaridad el paso del agua, que puede llegar al cimiento.

Los geocompuestos de refuerzo son una combinación de los geotextiles y las geomallas. Proporcionan la resistencia a tracción necesaria y evitan el paso del agua al cimiento.

Figura 3. Detalle de un muro de suelo reforzado con malla. Fuente: www.orbemedioambiente.es

Os dejo un pequeño vídeo donde podemos ver cómo se ejecuta esta unidad de obra.

Os dejo un vídeo de geotecnia.online sobre el uso de los geosintéticos.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Bomba peristáltica o de rotor para hormigón

Bomba peristáltica

Las bombas peristálticas o de rotor para hormigón están compuestas por dos rodillos de presión giratorios, instalados en una carcasa, cuyo interior se encuentra a presión inferior a la del exterior. Al girar, los rodillos comprimen al vacío una manguera flexible fabricada con malla de acero de larga duración, a través de la cuales impulsado el hormigón. La operación se realiza en un vacío de 0,8-0,9 bar y de esta forma el tubo recupera su forma produciendo el efecto de succión.

Así, como consecuencia de la diferencia de presiones entre la carcasa y el agitador, se produce sobre el hormigón un efecto de succión, haciendo que el hormigón fluya de forma constante hacia la manguera. El caudal es función del diámetro de la tubería y de la velocidad de rotación del rotor. A diferencia de las bombas de pistón, la unión manguera-conducción es directa sin desvíos ni cambio de sección.

Llenado del rotor de la bomba

La presión de bombeo es de media a baja, con una muy buena estanqueidad, con un mantenimiento sencillo y donde la pieza de mayor desgaste es el propio rotor y la manguera flexible. Sin embargo, solo pueden ser bombeados hormigones muy trabajables.

El equipo puede montarse sobre camión y la bomba hidráulica que mueve el rotor puede estar acoplada al motor diésel del camión. En caso de ir la bomba remolcada, dispone de un motor propio de accionamiento.

Principales ventajas:

  • Economía
  • Simplicidad de funcionamiento
  • Sencillez en el acoplamiento y regulación
  • Sin problemas de desgaste de válvulas y prácticamente la única pieza que requiere una reposición relativamente frecuente por desgaste de la misma, es la manguera y al cabo de unos 2000-2500 m3. Además, estos primeros fallos pueden apreciarse por las manchas que las salpicaduras de hormigón producen sobre las ventanas de la carcasa.

Aplicaciones:

  • Para obras pequeñas o medianas con alcances no excesivos (20-25 m)
  • Posibilidad de instalación en equipos móviles o estacionarios.
  • Posibilidad de uso para gunitado por vía húmeda

Veamos algunos vídeos para ver cómo funciona la bomba.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

PUTZMEISTER. Tecnología del hormigón para bombas de hormigónhttp://www.pmw.co.in/pm_india/data/BP_2158_E.pdf

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plataformas petrolíferas

Plataforma Mittelplate en Alemania. Wikipedia

El mundo necesita energía desesperadamente. Pero cada vez cuesta más encontrar petróleo y gas. Las prospecciones se llevan a sitios complicados. Los primeros pozos petroleros se perforaban mediante percusión, martillando una herramienta sujeta a un cable. Poco tiempo después las herramientas de cables fueron substituidas por la perforación rotatoria, que permitía perforar a mayor profundidad y en menor tiempo. En 1989 se alcanzó un récord en el pozo Kola Borehole al norte de Rusia, que alcanzó 12.262 m de profundidad, usando un motor de perforación no rotatoria en el fango.

Una plataforma petrolífera o plataforma petrolera es una estructura de grandes dimensiones cuya función es extraer petróleo y gas natural de los yacimientos del lecho marino que luego serán exportados hacia la costa. También sirve como vivienda de los trabajadores que operan en ella y como torre de telecomunicaciones. Dependiendo de las circunstancias, la plataforma puede estar fija al fondo del océano, flotar o ser una isla artificial.

1, 2) Plataformas convencionales fijas; 3) Plataformas de torre autoelevable; 4, 5) Plataformas flotantes tensionadas; 6) Plataformas Spar; 7,8) Plataformas semi-sumergibles; 9) Plataformas en barcos perforadores; 10) Plataformas sustentadas en el zócalo y unidas a instalaciones de extracción en el fondo marino. Wikipedia

Os dejo un vídeo donde podéis ver una plataforma petrolífera de récord. Es tan alta como la Torre Eiffel y pesa unas 20.000 toneladas. La compañía Shell ha tardado un año y medio en construirla.

Caracterización estadística de tableros pretensados para carreteras

El presente artículo presenta una caracterización estadística de una muestra de 87 tableros reales de pasos superiores pretensados de canto constante para carreteras. El objetivo principal es encontrar fórmulas de predimensionamiento con el mínimo número de datos posible que permita mejorar el diseño previo de estas estructuras. Para ello se ha realizado un análisis exploratorio y otro multivariante de las variables geométricas determinantes, de las cuantías de materiales y del coste, tanto para tableros macizos como aligerados. Los modelos de regresión han permitido deducir que el canto y la armadura activa quedan bien explicados por la luz, mientras que la cuantía de hormigón lo es por el canto. La variable que mejor explica (71,3%) el coste por unidad de superficie de tablero en losa maciza es el canto, mientras que en las aligeradas es la luz (51,9%). Las losas macizas son económicas en vanos inferiores a los 19,24 m. La luz principal y los voladizos, junto con la anchura del tablero para el caso de losas macizas, o el aligeramiento interior en el caso de las aligeradas, bastan para predimensionar la losa, con errores razonables en la estimación económica.


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Errores al plantear un problema de investigación

Cuando se plantea un problema de investigación, se cometen errores frecuentes que dificultan o distorsionan el trabajo de investigación. Es fácil confundir el método de investigación con el propósito que queremos investigar, siendo un error común focalizar el esfuerzo en la aplicación de procedimientos, algoritmos o metodologías de moda, olvidándose del problema de investigación.

Plantear un problema de investigación pasa por estructurar y afinar formalmente una idea de investigación, que representa el primer acercamiento a la realidad que se investigará o a los fenómenos, sucesos y ambientes a estudiar. De hecho, el planteamiento del problema de investigación pasa por desarrollar la idea en los siguientes elementos: objetivos de la investigación, preguntas de investigación, justificación de la investigación, viabilidad de la investigación y evaluación de las deficiencias en el conocimiento del problema. Pues bien, es habitual comprobar que algunos de estos conceptos se confunden o no se delimitan bien, lo cual entorpece o desvía el esfuerzo del investigador novel.

http://tutesisesfacil.blogspot.com.es/

Los objetivos y las preguntas de investigación deben ser coherentes entre sí e ir en la misma dirección. Los objetivos de investigación establecen qué se pretende con la investigación. Las preguntas de investigación dicen qué respuestas deben encontrarse mediante la investigación. La justificación establece por qué y para qué debe hacerse la investigación. La viabilidad señala si es posible realizarla y, por último, la evaluación de deficiencias valora la evolución del estudio del problema.

Pero veamos algunos ejemplos de errores frecuentes:

Pregunta de investigación poco específica: “¿Cuáles serán las necesidades de formación de alto nivel de las empresas constructoras medianas y grandes de la zona centro del país?” La falta de concreción es evidente: ¿Qué tipo de necesidades (financieras, tecnológicas, de calidad…)? ¿Qué significa “alto nivel”? ¿Qué son las empresas medianas y grandes? ¿Cuál es la zona centro del país?

Objetivo de investigación vago o muy general: “Determinar los problemas de producción de las empresas constructoras“. ¿Qué tipo de problemas? ¿Empresas constructoras de cualquier tamaño? ¿Construcción civil o edificación?

Objetivo de investigación dirigida a una etapa de la investigación y no a todo el proceso: “Medir el valor del capital humano en empresas constructoras medianas de la Comunidad Valenciana“. Además de impreciso, “medir” no es un objetivo de investigación, sino una actividad del proceso completo.

Por tanto, algunos de los errores más frecuentes que presentan los objetivos o las preguntas de investigación, son los siguientes:

  • Términos generales, poco específicos.
  • Objetivos o preguntas dirigidas a una etapa de la investigación y no a todo el proceso.
  • Objetivos o preguntas dirigidas a una consecuencia, entregable, producto o impacto de la investigación.
  • Objetivos o preguntas que no implican una investigación completa (el proceso) sino la obtención de un dato o cierta información.
  • Objetivos o preguntas que son de poco valor como para desarrollar toda una investigación.
  • Objetivos o preguntas que plantean estudios dispersos (en varias direcciones).

Os recomiendo el libro “Metodología de la investigación”, de Roberto Hernández Sampieri y colaboradores, de la editorial McGraw-Hill Education, que en el 2014 ya van por su sexta edición. Os dejo un vídeo del autor sobre el tema.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La norma ISO 10006 “Directrices para la calidad en la gestión de proyectos”

Colocación de dintel prefabricado. Viaducto sobre el Mijares (Castellón), 2002.

 Siguiendo la línea de difundir algunas normas de interés en el ámbito de la construcción, en este post vamos a dar un breve repaso a la norma ISO 10006 (en España UNE 66916-6:2003) como norma que pretende estandarizar la forma de gestionar todo tipo de proyectos, no sólo los de construcción.

Estas normas han supuesto un paso importante para establecer un lenguaje común en la gestión del proceso proyecto-construcción. Sin embargo, como veremos a continuación, ni las leyes, ni las administraciones públicas ni siquiera las empresas constructoras o consultoras se encuentran adaptadas a esta forma de entender los proyectos.

La calidad en la gestión de proyectos implica, por una parte, la calidad de los procesos proyectuales y, por otra, la calidad del proyecto final (producto). Ambos son imprescindibles y requieren un tratamiento sistemático. Debe asegurarse la satisfacción del cliente dentro de los márgenes que proporcionan las reglas y objetivos de la empresa y del propio equipo de proyecto. La norma cubre un espectro muy amplio de proyectos, en magnitud, intensidad y especialización.

Continue reading “La norma ISO 10006 “Directrices para la calidad en la gestión de proyectos””

Participación española en la construcción del Metro de Riad

El Metro de Riad es un sistema de transporte rápido actualmente en construcción en la capital de Arabia Saudí, formando parte del denominado Proyecto de Transporte Público de Riad (RPTP, por sus siglas en inglés). Su realización servirá para acompañar a una reestructuración del transporte público de la ciudad, que lo convertirá en la columna vertebral del mismo. Comprende la construcción de un metro, un sistema de autobuses, así como infraestructuras y otros servicios asociados en la ciudad, convirtiéndose en el proyecto de transporte público más grande del país. El metro constará de seis líneas, para un total de 175 km, dando servicio al centro de la ciudad, al aeropuerto y al distrito financiero.

El proyecto del metro de Riad está dividido en tres paquetes que han sido adjudicados a consorcios internacionales: uno liderado por el grupo italiano Ansaldo STS, otro por el grupo americano Bechtel y por el español FCC. Este megaproyecto requerirá 600.000 toneladas de acero, 4,3 millones de metros cúbicos de hormigón, 176 kilómetros de vías, más de 30.000 puestos de trabajo y tendrá un coste total de 16.300 millones de euros. Constará de 85 estaciones y tendrá vagones con aire acondicionado divididos en 3 clases y que operarán sin conductor.

En un vídeo de PROIN3D se presenta esta megaconstrucción.

Un consorcio liderado por Fomento de Construcciones y Contratas (FCC) se ha adjudicado la construcción de tres líneas del metro de Riad, gracias a un contrato valorado en 6.070 millones de euros. Según la compañía, se trata del mayor contrato internacional de la historia de la construcción española. El consorcio que lidera FCC, integrado también por la coreana Samsung, las francesas Alstom y Setec, la holandesa Strukton, Freyssinet Saudi Arabia y la española Typsa, construirá las líneas 4, 5 y 6 del metro de Riad, el más grande del mundo en proyecto con 176 kilómetros de longitud. El plazo de ejecución de las obras será de cinco años y su construcción dará empleo a más de 15.000 personas y unos 500 puestos de trabajo podrían ser para españoles, según el presidente de la compañía. El lote logrado por el consorcio consiste en el diseño y la construcción de las líneas 4 (naranja), 5 (amarilla) y 6 (púrpura), que constarán de 25 estaciones, para las que serán necesarios un total de 64,6 kilómetros de vías de metro, 29,8 kilómetros de viaductos, 26,6 kilómetros de vías subterráneas y 8,2 kilómetros de vías de superficie.

Parte española del proyecto del Metro de Ryad. Infografía: El País

A continuación os dejo un vídeo realizado por la empresa PROIN3D donde se explica en detalle cómo será la propuesta para el pozo de ataque central y su proceso constructivo para la estación 5B3 de la línea 5. Esta línea corre bajo tierra en un túnel excavado a lo largo de King Abdulaziz Street, entre el rey Abdulaziz Centro Histórico y la Base Aérea Riyadh, antes de conectar con el rey Abdullah Road. La longitud de la línea es de aproximadamente 12.9 km (8,0 millas) y cuenta con 10 estaciones, además de 2 estaciones de transferencia con las líneas 1 y 2.

Construcción de la presa de Aldeadávila (Salamanca)

Hoy, 17 de octubre de 2014, se cumplen 50 años de la inauguración oficial de la presa de Aldeadávila. Un hito de la ingeniería civil española. No podíamos dejar pasar la ocasión para recordar esta obra en nuestro blog.

El embalse, la central y la presa de Aldeadávila (también conocida como salto de Aldeadávila) son una obra de ingeniería hidroeléctrica construida en el curso medio del río Duero, a 7 km de la localidad de Aldeadávila de la Ribera (Salamanca). La presa es un arco de gravedad de hormigón de 139,50 m de altura. Constituye la central hidroeléctrica más importante de España en cuanto a potencia instalada y de producción. El conjunto de los trabajos realizados para llevar a cabo esta infraestructura tuvieron lugar entre 1956 y 1963. Dispone de un aliviadero de superficie con ocho compuertas de segmento de 14,00 m por 8,30 m. Además, posee un túnel aliviadero con dos compuertas tipo segmento de 12,50 m x 9,70 m.

Construida entre los años 1958 y 1965 -justo tras el periodo de autarquía y al comienzo de la apertura española al exterior-, se trata de una de las presas más emblemáticas de la Ingeniería de Presas tanto a nivel español como a nivel mundial. Es conocido el rodaje de las tomas iniciales y finales de la película Doctor Zhivago, en julio de 1965 en la presa.

 

Os dejo el siguiente enlace para que tengáis más detalles de la obra: http://ropdigital.ciccp.es/pdf/publico/1964/1964_tomoI_2988_21.pdf. Además, aunque los vídeos son antiguos, os los paso para ver los procesos constructivos de la época. Espero que os gusten.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las islas artificiales de Dubai

La Palm Jumeirah a principios de 2006. Wikipedia

Las posibilidades de la ingeniería permiten la realización de grandes obras. Algunas de ellas son verdaderamente importantes, aunque no exentas de polémicas, especialmente por su posible impacto ambiental. Es el caso de las islas artificiales que se construyen en Dubai. Este pequeño país se está convirtiendo en estos últimos años en una de las zonas del mundo más extravagantes en lo que refiere a la construcción.

Las Islas Palm o Palm Islands , son un grupo de tres islas artificiales actualmente en construcción, las cuales están entre las más grandes del mundo en su tipo. Sobre estas islas, se construirá infraestructura de tipo comercial y residencial, pues se espera que se conviertan en un destino turístico. Se encuentran en la costa de la ciudad de Dubái, en los Emiratos Árabes Unidos. El proyecto aumentará en unos 520 km la superficie de playas de Dubái y la lleva a cabo la empresa Nakheel Properties, la cual a su vez, encomendó su construcción y desarrollo a la compañías belga Jan de Nul y holandesa Van Oord.

Para construir estos proyectos de arena, es necesario extraer arena del fondo del golfo Pérsico. Esta parte del proyecto fue encomendada a la compañía belga Jan De Nul y la holandesa Van Oord. La arena es luego arrojada por un barco y guiado por un sistema de GPS, por un guía desde la costa de la isla. La arena es pulverizada por los buques de dragado en un área requerida y es un proceso conocido como rainbowing, debido a los arcos en el aire que se forman mientras se pulveriza la arena. Para llevar a cabo el proceso, son necesarias dragas eficientes y potentes que estén a la altura del proyecto. Sin ir más lejos, la draga más grande del mundo, la “Cristóbal Colón”, construida en La Naval de Sestao, es empleada en este mega proyecto. Alrededor de cada palmera hay un gran rompeolas de piedra.

Rainbowing. By Beeldbank V&W – Beeldbank V&W, Attribution, https://commons.wikimedia.org/w/index.php?curid=9403076

El rompeolas de la Palm Jumeirah tiene más de 7 millones de toneladas de rocas. Las rocas fueron colocadas una por una por una grúa, seguidas por un buzo y cada una posee una coordenada específica. El trabajo en la Palm Jebel Ali fue comenzado por el grupo constructor Jan De Nul en 2002 y finalizado para finales de 2006. El proyecto de dicha isla incluye también la construcción de una península de 4 kilómetros de largo, protegida por un rompeolas de 200 metros de ancho y 17 kilómetros de largo alrededor de la isla. Fueron recuperados 135 millones de metros cúbicos de arena y piedra caliza.

Os paso algún vídeo al respecto. Espero que os sea de interés.

La reposición de servicios afectados por una obra

 

Uno de los documentos que figuran como Anejo en un proyecto de construcción es el “Anejo de reposición de servicios afectados“. Se trata de un documento que tiene por objeto la resolución de los problemas técnicos que puedan presentarse durante las obras de construcción proyectadas y que estén relacionados con la existencia de servicios de propiedad pública o privada.

Las obras proyectadas afectan, en mayor o menor medida, a servicios existentes que deben ser repuestos convenientemente durante la construcción de las obras; su solución técnica debe reflejarse en el proyecto, y aparecer en cada uno de los documentos del mismo:

  • El cálculo (en el anejo/s correspondiente/s)
  • La definición técnica (anejo, planos y pliego)
  • Las condiciones de ejecución (pliego)
  • La valoración de la reposición o protección propuesta (presupuesto)

Los servicios afectados por las obras se suelen dividir en dos grandes grupos:

  • Los que se resuelven con la participación de las compañías afectadas, concesionarias del servicio, que aportan parte de los medios técnicos necesarios para trasladar sus servicios o dirigen y vigilan su protección. Se consideran todas aquellas líneas que pueden representar peligro o trastorno grave en caso de fallo: energía eléctrica en alta tensión (igual o superior a 20 KV), telefonía, telegrafía, gas y abastecimiento de agua (tuberías de transporte o de alta presión). Normalmente, no se incluyen los cálculos que son realizados por la compañía concesionaria, sino únicamente los planos de estado actual y proyectado y la valoración. Esta puede incluirse dentro del presupuesto de ejecución material o fuera de él, como parte del presupuesto para conocimiento de la administración.
  • Los que son modificados o protegidos por el contratista principal de las obras durante su ejecución; normalmente dependen de ayuntamientos o particulares: energía eléctrica en baja tensión, alumbrado, abastecimiento de agua, colectores de aguas pluviales y/o residuales, acequias, instalaciones semafóricas y de control de tráfico, caminos, accesos y cerramientos. En este caso, el proyecto incluye, perfectamente desarrollados, los cálculos, la definición gráfica, las condiciones técnicas, la valoración y la planificación de los trabajos.

La identificación de los servicios e instalaciones afectadas por las obras se tiene que llevar a cabo exhaustivamente mediante:

  • Contactos con las compañías afectadas (Red Eléctrica Española, Iberdrola, Telefónica, Gas Natural, Aguas de Valencia, etc.), otras administraciones involucradas (estatales, autonómicas, diputaciones o ayuntamientos), comunidades de regantes y propietarios particulares. La correspondencia con las diferentes compañías queda reflejada en el anejo.
  • Reconocimiento de campo donde se compruebe la información facilitada y, a partir de la cartografía del proyecto, se plasmen los servicios afectados en los planos de planta a la escala adecuada. A veces es necesario recurrir a catas con el fin de localizar las líneas, siempre de acuerdo con los responsables técnicos de los servicios afectados.
http://4.bp.blogspot.com/

En cuanto a líneas eléctricas de alta tensión, se diferencian los siguientes casos:

  • 20 KV (media tensión): los cálculos del traslado y reposición de líneas no son complicados y puede efectuarlos un ingeniero industrial, siguiendo lo especificado en el Reglamento Técnico de Líneas Aéreas de Alta Tensión (Decreto 3151/1968, de 28/11/68, BOE n.º 311 de 27/12/68 y sus posteriores actualizaciones). Las líneas son propiedad de la compañía concesionaria del servicio (Iberdrola, Endesa, etc.).
  • Superior a 20 KV e inferior a 380 KV: los cálculos son complicados y es conveniente que los realice la propia compañía concesionaria del servicio (Iberdrola, Endesa, etc.), facilitando posteriormente el diseño proyectado.
  • Igual o superior a 380 kV: son las líneas de transporte de energía eléctrica propiedad del Estado. La modificación de estas líneas es muy costosa y complicada y hay que evitarla en la medida de lo posible. Las líneas las gestiona Red Eléctrica Española, que es quien debe efectuar los cálculos y facilitar el diseño proyectado.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.